
#BHUSA @BlackHatEvents

Dive into
Apple IO80211Family

Vol. II

wang yu

#BHUSA @BlackHatEvents
Information Classification: General

About me
yu.wang@cyberserval.cn

Co-founder & CEO at Cyberserval
https://www.cyberserval.com/

Background of this research project

Dive into Apple IO80211FamilyV2
https://www.blackhat.com/us-20/briefings/schedule/index.html#dive-into-apple-iofamilyv-20023

mailto:yu.wang@cyberserval.cn
https://www.cyberserval.com/
https://www.blackhat.com/us-20/briefings/schedule/index.html#dive-into-apple-iofamilyv-20023

#BHUSA @BlackHatEvents
Information Classification: General

The Apple 80211 Wi-Fi Subsystem

#BHUSA @BlackHatEvents
Information Classification: General

Previously on IO80211Family

Starting from iOS 13 and macOS 10.15 Catalina, Apple refactored the

architecture of the 80211 Wi-Fi client drivers and renamed the new generation

design to IO80211FamilyV2.

From basic network communication to trusted privacy sharing between all types

of Apple devices.

#BHUSA @BlackHatEvents
Information Classification: General

Previously on IO80211Family (cont)

Daemon: airportd, sharingd ...

Framework: Apple80211, CoreWifi, CoreWLAN ...

Family drivers V2: IO80211FamilyV2, IONetworkingFamily

Family drivers: IO80211Family, IONetworkingFamily

Plugin drivers V2: AppleBCMWLANCore replaces AirPort Brcm series drivers

Plugin drivers: AirPortBrcmNIC, AirPortBrcm4360 / 4331, AirPortAtheros40 ...

Low-level drivers V2: AppleBCMWLANBusInterfacePCIe …

Low-level drivers: IOPCIFamily …

#BHUSA @BlackHatEvents
Information Classification: General

Previously on IO80211Family (cont)

An early generation fuzzing framework, a simple code coverage analysis tool, and

a Kemon-based KASAN solution.

Vulnerability classification:

1. Vulnerabilities affecting only IO80211FamilyV2

1.1. Introduced when porting existing V1 features

1.2. Introduced when implementing new V2 features

2. Vulnerabilities affecting both IO80211Family (V1) and IO80211FamilyV2

3. Vulnerabilities affecting only IO80211Family (V1)

#BHUSA @BlackHatEvents
Information Classification: General

Previously on IO80211Family (cont)

Some of the vulnerabilities I've introduced in detail, but others I can't disclose

because they haven't been fixed before Black Hat USA 2020.

Family drivers V2: IO80211FamilyV2, IONetworkingFamily

CVE-2020-9832

Plugin drivers V2: AppleBCMWLANCore replaces AirPort Brcm series drivers

CVE-2020-9834, CVE-2020-9899, CVE-2020-10013

Low-level drivers V2: AppleBCMWLANBusInterfacePCIe …

CVE-2020-9833

#BHUSA @BlackHatEvents
Information Classification: General

Two years have passed

All the previous vulnerabilities have been fixed, the overall security of the system has

been improved. The macOS Big Sur/Monterey/Ventura has been released, and the

era of Apple Silicon has arrived.

1. Apple IO80211FamilyV2 has been refactored again, and its name has been

changed back to IO80211Family. What happened behind this?

2. How to identify the new attack surfaces of the 80211 Wi-Fi subsystem?

3. What else can be improved in engineering and hunting?

4. Most importantly, can we still find new high-quality kernel vulnerabilities?

#BHUSA @BlackHatEvents
Information Classification: General

Never stop exploring

1. Change is the only constant.

2. There are always new attack surfaces, and we need to constantly accumulate

domain knowledge.

3. Too many areas can be improved.

4. Yes, definitely.

#BHUSA @BlackHatEvents
Information Classification: General

Dive into Apple IO80211Family (Again)

#BHUSA @BlackHatEvents
Information Classification: General

Attack surface identification

I'd like to change various settings of the network while sending and receiving data.

- Traditional BSD ioctl, IOKit IOConnectCallMethod series and sysctl interfaces

- Various packet sending and receiving interfaces

- Various network setting interfaces

- Various types of network interfaces

Please Make A Dentist Appointment ASAP: Attacking IOBluetoothFamily HCI and

Vendor-Specific Commands
https://www.blackhat.com/eu-20/briefings/schedule/#please-make-a-dentist-appointment-asap-attacking-

iobluetoothfamily-hci-and-vendor-specific-commands-21155

https://www.blackhat.com/eu-20/briefings/schedule/#please-make-a-dentist-appointment-asap-attacking-iobluetoothfamily-hci-and-vendor-specific-commands-21155

#BHUSA @BlackHatEvents
Information Classification: General

ifioctl()
https://github.com/apple/darwin-xnu/blob/xnu-7195.121.3/bsd/net/if.c#L2854

ifioctl_nexus()
https://github.com/apple-oss-distributions/xnu/blob/main/bsd/net/if.c#L3288

skoid_create() and sysctl registration
https://github.com/apple-oss-distributions/xnu/blob/main/bsd/skywalk/core/skywalk_sysctl.c#L81

Some new cases

https://github.com/apple/darwin-xnu/blob/xnu-7195.121.3/bsd/net/if.c#L2854
https://github.com/apple-oss-distributions/xnu/blob/main/bsd/net/if.c#L3288
https://github.com/apple-oss-distributions/xnu/blob/main/bsd/skywalk/core/skywalk_sysctl.c#L81

#BHUSA @BlackHatEvents
Information Classification: General

Interfaces integration

I'd like to switch the state or working mode of the kernel state machine randomly for

different network interfaces.

#BHUSA @BlackHatEvents
Information Classification: General

ifconfig command

ap1: Access Point

awdl0: Apple Wireless Direct Link

llw0: Low-latency WLAN Interface. (Used by the Skywalk system)

utun0:Tunneling Interface

lo0: Loopback (Localhost)

gif0: Software Network Interface

stf0: 6to4 Tunnel Interface

en0: Physical Wireless

enX: Thunderbolt / iBridge / Apple T2 Controller

Bluetooth PAN / VM Network Interface

bridge0: Thunderbolt Bridge

#BHUSA @BlackHatEvents
Information Classification: General

Domain knowledge accumulation

Read the XNU source code and documents.

Look for potential attack surface from XNU test cases:
https://github.com/apple/darwin-xnu/tree/xnu-7195.121.3/tests

https://github.com/apple/darwin-xnu/tree/xnu-7195.121.3/tests

#BHUSA @BlackHatEvents
Information Classification: General

Some examples

net agent:
https://github.com/apple/darwin-xnu/blob/xnu-7195.121.3/tests/netagent_race_infodisc_56244905.c

https://github.com/apple/darwin-xnu/blob/xnu-7195.121.3/tests/netagent_kctl_header_infodisc_56190773.c

net bridge:
https://github.com/apple/darwin-xnu/blob/xnu-7195.121.3/tests/net_bridge.c

net utun:
https://github.com/apple/darwin-xnu/blob/xnu-7195.121.3/tests/net_tun_pr_35136664.c

IP6_EXTHDR_CHECK:
https://github.com/apple/darwin-xnu/blob/xnu-7195.121.3/tests/IP6_EXTHDR_CHECK_61873584.c

https://github.com/apple/darwin-xnu/blob/xnu-7195.121.3/tests/netagent_race_infodisc_56244905.c
https://github.com/apple/darwin-xnu/blob/xnu-7195.121.3/tests/netagent_kctl_header_infodisc_56190773.c
https://github.com/apple/darwin-xnu/blob/xnu-7195.121.3/tests/net_bridge.c
https://github.com/apple/darwin-xnu/blob/xnu-7195.121.3/tests/net_tun_pr_35136664.c
https://github.com/apple/darwin-xnu/blob/xnu-7195.121.3/tests/IP6_EXTHDR_CHECK_61873584.c

#BHUSA @BlackHatEvents
Information Classification: General

Random, but not too random

So far, the new generation of Apple 80211 Wi-Fi fuzzing framework integrates

more than forty network interfaces and attack surfaces.

One more thing. Is the more attack surfaces covered in each test the better?

In practice, I found that this is not the case.

#BHUSA @BlackHatEvents
Information Classification: General

Conclusion one

- About network interfaces and attack surfaces

1. We need to accumulate as much domain knowledge as possible by learning

XNU source code, documents and test cases.

2. For each round, we should randomly select two or three interface units and test

them as fully as possible.

#BHUSA @BlackHatEvents
Information Classification: General

Kernel debugging

From source code learning, static analysis to remote kernel debugging.

Make full use of LLDB and KDK:

- The information provided in the panic log is often not helpful in finding the

root cause

- Variable (initial) value sometimes require dynamic analysis

- Kernel heap corruption requires remote debugging

#BHUSA @BlackHatEvents
Information Classification: General

A kernel panic case

Without the help of the kernel debugger, there is probably no answer.

#BHUSA @BlackHatEvents
Information Classification: General

#BHUSA @BlackHatEvents
Information Classification: General

Kernel Debug Kit

"Note: Apple silicon doesn’t support active kernel debugging. … you cannot set
breakpoints, continue code execution, step into code, step over code, or step out
of the current instruction."

Asahi Linux
https://asahilinux.org/

An Overview of macOS Kernel Debugging
https://blog.quarkslab.com/an-overview-of-macos-kernel-debugging.html

LLDBagility: Practical macOS Kernel Debugging
https://blog.quarkslab.com/lldbagility-practical-macos-kernel-debugging.html

https://asahilinux.org/
https://blog.quarkslab.com/an-overview-of-macos-kernel-debugging.html
https://blog.quarkslab.com/lldbagility-practical-macos-kernel-debugging.html

#BHUSA @BlackHatEvents
Information Classification: General

Conclusion two

- About network interfaces and attack surfaces

- About static and dynamic analysis methods

1. We should make full use of LLDB kernel debugging environment, KDK and public

symbols for reverse engineering.

2. At this stage, we need the help of third-party solutions for the Apple Silicon platform.

#BHUSA @BlackHatEvents
Information Classification: General

Kernel Address Sanitizer

The previous panic is a typical case of corruption, and we need help from KASAN.

However, we need to do some fixes because sometimes the built-in tools/kernels

don't work very well.

We even need to implement KASAN-like solution to dynamically monitor special

features of third-party kernel extensions.

#BHUSA @BlackHatEvents
Information Classification: General

console_io_allowed()
https://github.com/apple/darwin-xnu/blob/xnu-7195.121.3/osfmk/console/serial_console.c#L162

An obstacle case

static inline bool

console_io_allowed(void)

{

if (!allow_printf_from_interrupts_disabled_context &&

!console_suspended &&

startup_phase >= STARTUP_SUB_EARLY_BOOT &&

!ml_get_interrupts_enabled()) {

#if defined(__arm__) || defined(__arm64__) || DEBUG || DEVELOPMENT

panic("Console I/O from interrupt-disabled context");

#else

return false;

#endif

}

return true;

}

#BHUSA @BlackHatEvents
Information Classification: General

#BHUSA @BlackHatEvents
Information Classification: General

KASAN and code coverage analysis

Kemon: An Open Source Pre and Post Callback-based Framework for macOS

Kernel Monitoring
https://github.com/didi/kemon

https://www.blackhat.com/us-18/arsenal/schedule/index.html#kemon-an-open-source-pre-and-post-

callback-based-framework-for-macos-kernel-monitoring-12085

I have ported Kemon and the kernel inline engine to the Apple Silicon platform.

https://github.com/didi/kemon
https://www.blackhat.com/us-18/arsenal/schedule/index.html#kemon-an-open-source-pre-and-post-callback-based-framework-for-macos-kernel-monitoring-12085

#BHUSA @BlackHatEvents
Information Classification: General

Conclusion three

- About network interfaces and attack surfaces

- About static and dynamic analysis methods

- About creating tools

1. We need to do fixes because sometimes the built-in tools don't work very well.

2. We even need to implement KASAN-like solution, code coverage analysis tool to

dynamically monitor third-party closed source kernel extensions.

#BHUSA @BlackHatEvents
Information Classification: General

Apple SDKs and build-in tools

Apple80211 SDKs (for 10.4 Tiger, 10.5 Leopard and 10.6 Snow Leopard)
https://github.com/phracker/MacOSX-SDKs/releases

Build-in network and Wi-Fi tools

https://github.com/phracker/MacOSX-SDKs/releases

#BHUSA @BlackHatEvents
Information Classification: General

Giving back to the community

#define APPLE80211_IOC_COMPANION_SKYWALK_LINK_STATE 0x162

#define APPLE80211_IOC_NAN_LLW_PARAMS 0x163

#define APPLE80211_IOC_HP2P_CAPS 0x164

#define APPLE80211_IOC_RLLW_STATS 0x165

APPLE80211_IOC_UNKNOWN (NULL/No corresponding handler) 0x166

#define APPLE80211_IOC_HW_ADDR 0x167

#define APPLE80211_IOC_SCAN_CONTROL 0x168

APPLE80211_IOC_UNKNOWN (NULL/No corresponding handler) 0x169

#define APPLE80211_IOC_CHIP_DIAGS 0x16A

#define APPLE80211_IOC_USB_HOST_NOTIFICATION 0x16B

#define APPLE80211_IOC_LOWLATENCY_STATISTICS 0x16C

#define APPLE80211_IOC_DISPLAY_STATE 0x16D

#define APPLE80211_IOC_NAN_OOB_AF_TX 0x16E

#define APPLE80211_IOC_NAN_DATA_PATH_KEEP_ALIVE_IDENTIFIER 0x16F

#define APPLE80211_IOC_SET_MAC_ADDRESS 0x170

#define APPLE80211_IOC_ASSOCIATE_EXTENDED_RESULT 0x171

#define APPLE80211_IOC_AWDL_AIRPLAY_STATISTICS 0x172

#define APPLE80211_IOC_HP2P_CTRL 0x173

#define APPLE80211_IOC_REQUEST_BSS_BLACKLIST 0x174

#define APPLE80211_IOC_ASSOC_READY_STATUS 0x175

#define APPLE80211_IOC_TXRX_CHAIN_INFO 0x176

#BHUSA @BlackHatEvents
Information Classification: General

Conclusion

- About network interfaces and attack surfaces

- About static and dynamic analysis methods

- About creating tools

- About others

1. Pay attention to the tools provided in the macOS/iOS operating system.

2. We should make full use of the apple SDKs, and contribute to Wi-Fi developer

community.

#BHUSA @BlackHatEvents
Information Classification: General

DEMO

Apple 80211 Wi-Fi subsystem fuzzing framework

on the latest macOS Ventura 13.0 Beta 4 (22A5311f)

#BHUSA @BlackHatEvents
Information Classification: General

Apple 80211 Wi-Fi Subsystem
Latest Zero-day Vulnerability Case Studies

#BHUSA @BlackHatEvents
Information Classification: General

Apple Product Security Follow-up IDs:

791541097 (CVE-2022-32837), 797421595 (CVE-2022-26761),

797590499 (CVE-2022-26762), OE089684257715 (CVE-2022-32860),

OE089692707433 (CVE-2022-32847), OE089712553931,

OE089712773100, OE0900967233115, OE0908765113017,

OE090916270706, etc.

Follow-up ID and CVE ID

#BHUSA @BlackHatEvents
Information Classification: General

CVE-2020-9899:

AirPortBrcmNIC`AirPort_BrcmNIC::setROAM_PROFILE

Kernel Stack Overflow Vulnerability

About the security content of macOS Catalina 10.15.6,

Security Update 2020-004 Mojave,

Security Update 2020-004 High Sierra
https://support.apple.com/en-us/HT211289

https://support.apple.com/en-us/HT211289

#BHUSA @BlackHatEvents
Information Classification: General

Two years have passed, are there still such high-quality arbitrary (kernel) memory

write vulnerabilities?

#BHUSA @BlackHatEvents
Information Classification: General

CVE-2022-32847:

AirPort_BrcmNIC::setup_btc_select_profile

Kernel Stack Overwrite Vulnerability

About the security content of iOS 15.6 and iPadOS 15.6
https://support.apple.com/en-us/HT213346

About the security content of macOS Monterey 12.5
https://support.apple.com/en-us/HT213345

About the security content of macOS Big Sur 11.6.8
https://support.apple.com/en-us/HT213344

Yes, definitely

https://support.apple.com/en-us/HT213346
https://support.apple.com/en-us/HT213345
https://support.apple.com/en-us/HT213344

#BHUSA @BlackHatEvents
Information Classification: General

Process 1 stopped

* thread #1, stop reason = EXC_BAD_ACCESS (code=10, address=0xd1dd0000)

frame #0: 0xffffff8005a53fbb

-> 0xffffff8005a53fbb: cmpl $0x1, 0x18(%rbx,%rcx,4)

0xffffff8005a53fc0: cmovnel %esi, %edi

0xffffff8005a53fc3: orl %edi, %edx

0xffffff8005a53fc5: incq %rcx

Target 0: (kernel.kasan) stopped.

(lldb) register read

General Purpose Registers:

rax = 0x00000000481b8d16

rbx = 0xffffffb0d1dcf3f4

rcx = 0x00000000000002fd

rbp = 0xffffffb0d1dcf3e0

rsp = 0xffffffb0d1dcf3c0

rip = 0xffffff8005a53fbb AirPortBrcmNIC`AirPort_BrcmNIC::setup_btc_select_profile + 61

(lldb) bt

* thread #1, stop reason = signal SIGSTOP

* frame #0: 0xffffff8005a53fbb AirPortBrcmNIC`AirPort_BrcmNIC::setup_btc_select_profile + 61

#BHUSA @BlackHatEvents
Information Classification: General

CVE-2020-10013:

AppleBCMWLANCoreDbg

Arbitrary Memory Write Vulnerability

About the security content of iOS 14.0 and iPadOS 14.0
https://support.apple.com/en-us/HT211850

About the security content of macOS Catalina 10.15.7,

Security Update 2020-005 High Sierra,

Security Update 2020-005 Mojave
https://support.apple.com/en-us/HT211849

https://support.apple.com/en-us/HT211850
https://support.apple.com/en-us/HT211849

#BHUSA @BlackHatEvents
Information Classification: General

kernel`bcopy:

-> 0xffffff8000398082 <+18>: rep

0xffffff8000398083 <+19>: movsb (%rsi), %es:(%rdi)

0xffffff8000398084 <+20>: retq

0xffffff8000398085 <+21>: addq %rcx, %rdi

(lldb) register read rcx rsi rdi

General Purpose Registers:

rcx = 0x0000000000000023

rsi = 0xffffff81b1d5e000

rdi = 0xffffff80deadbeef

(lldb) bt

* thread #1, stop reason = signal SIGSTOP

* frame #0: 0xffffff8000398082 kernel`bcopy + 18

frame #1: 0xffffff800063abd4 kernel`memmove + 20

frame #2: 0xffffff7f828e1a64 AppleBCMWLANCore`AppleBCMWLANUserPrint + 260

frame #3: 0xffffff7f8292bab7 AppleBCMWLANCore`AppleBCMWLANCoreDbg::cmdSetScanIterationTimeout + 91

frame #4: 0xffffff7f82925949 AppleBCMWLANCore`AppleBCMWLANCoreDbg::dispatchCommand + 479

frame #5: 0xffffff7f828b37bd AppleBCMWLANCore::apple80211Request + 1319

#BHUSA @BlackHatEvents
Information Classification: General

1. CVE-2020-10013 is an arbitrary memory write vulnerability caused by boundary

checking errors.

2. The value to be written is predictable or controllable.

3. Combined with kernel information disclosure vulnerabilities, a complete local

EoP exploit chain can be formed. The write primitive is stable and does not require

heap Feng Shui manipulation.

CVE-2020-9833 (p44-p49):
https://i.blackhat.com/USA-20/Thursday/us-20-Wang-Dive-into-Apple-IO80211FamilyV2.pdf

4. This vulnerability affects hundreds of AppleBCMWLANCoreDbg handlers!

Summary of case #3

https://i.blackhat.com/USA-20/Thursday/us-20-Wang-Dive-into-Apple-IO80211FamilyV2.pdf

#BHUSA @BlackHatEvents
Information Classification: General

Two years have passed, are there still such high-quality arbitrary (kernel) memory

write vulnerabilities?

#BHUSA @BlackHatEvents
Information Classification: General

CVE-2022-26762:

IO80211Family`getRxRate

Arbitrary Memory Write Vulnerability

About the security content of iOS 15.5 and iPadOS 15.5
https://support.apple.com/en-us/HT213258

About the security content of macOS Monterey 12.4
https://support.apple.com/en-us/HT213257

Yes, definitely

https://support.apple.com/en-us/HT213258
https://support.apple.com/en-us/HT213257

#BHUSA @BlackHatEvents
Information Classification: General

Process 1 stopped

* thread #1, stop reason = signal SIGSTOP

frame #0: 0xffffff8008b23ed7 IO80211Family`getRxRate + 166

IO80211Family`getRxRate:

-> 0xffffff8008b23ed7 <+166>: movl %eax, (%rbx)

0xffffff8008b23ed9 <+168>: xorl %eax, %eax

0xffffff8008b23edb <+170>: movq 0xca256(%rip), %rcx

0xffffff8008b23ee2 <+177>: movq (%rcx), %rcx

Target 2: (kernel) stopped.

(lldb) register read

General Purpose Registers:

rax = 0x0000000000000258

rbx = 0xdeadbeefdeadcafe

rip = 0xffffff8008b23ed7 IO80211Family`getRxRate + 166

(lldb) bt

* thread #1, stop reason = signal SIGSTOP

* frame #0: 0xffffff8008b23ed7 IO80211Family`getRxRate + 166

frame #1: 0xffffff8008af9326 IO80211Family`IO80211Controller::_apple80211_ioctl_getLegacy + 70

frame #2: 0xffffff8008b14adc IO80211Family`IO80211SkywalkInterface::performGatedCommandIOCTL + 274

#BHUSA @BlackHatEvents
Information Classification: General

1. Compared with CVE-2020-10013, the root cause of CVE-2022-26762 is simpler:

the vulnerable kernel function forgets to sanitize user-mode pointer. These simple

and stable kernel Vulnerabilities are powerful, they are perfect for Pwn2Own.

2. The value to be written is fixed. The write primitive is stable and does not require

heap Feng Shui manipulation.

3. Kernel vulnerabilities caused by copyin/copyout, copy_from_user/copy_to_user,

ProbeForRead/ProbeForWrite are very common.

4. All inputs are potentially harmful.

Summary of case #4

#BHUSA @BlackHatEvents
Information Classification: General

CVE-2022-32860 and CVE-2022-32837

Kernel Out-of-bounds Read and Write Vulnerability

About the security content of iOS 15.6 and iPadOS 15.6
https://support.apple.com/en-us/HT213346

About the security content of macOS Monterey 12.5
https://support.apple.com/en-us/HT213345

About the security content of macOS Big Sur 11.6.8
https://support.apple.com/en-us/HT213344

https://support.apple.com/en-us/HT213346
https://support.apple.com/en-us/HT213345
https://support.apple.com/en-us/HT213344

#BHUSA @BlackHatEvents
Information Classification: General

#BHUSA @BlackHatEvents
Information Classification: General

CVE-2022-26761:

IO80211AWDLPeerManager::updateBroadcastMI

Out-of-bounds Read and Write Vulnerability caused by Type Confusion

About the security content of macOS Monterey 12.4
https://support.apple.com/en-us/HT213257

About the security content of macOS Big Sur 11.6.6
https://support.apple.com/en-us/HT213256

https://support.apple.com/en-us/HT213257
https://support.apple.com/en-us/HT213256

#BHUSA @BlackHatEvents
Information Classification: General

Takeaways and The End

#BHUSA @BlackHatEvents
Information Classification: General

From the perspective of kernel development

1. Apple has made a lot of efforts, and the security of macOS/iOS has been

significantly improved.

2. All inputs are potentially harmful, kernel developers should carefully check all

input parameters.

3. New features always mean new attack surfaces.

4. Callback functions, especially those that support different architectures or working

modes, and state machine, exception handling need to be carefully designed.

5. Corner cases matter.

#BHUSA @BlackHatEvents
Information Classification: General

From the perspective of vulnerability research

1. Arbitrary kernel memory write vulnerabilities represented by CVE-2022-26762 are

powerful, they are simple and stable enough.

2. Combined with kernel information disclosure vulnerabilities such as CVE-2020-

9833, a complete local EoP exploit chain can be formed.

3. Stack out-of-bounds read and write vulnerabilities represented by CVE-2022-

32847 are often found. The root cause is related to stack-based variables being

passed and used for calculation or parsing. The stack canary can't solve all the

problems.

#BHUSA @BlackHatEvents
Information Classification: General

From the perspective of vulnerability research (cont)

4. Vulnerabilities represented by CVE-2022-26761 indicate that handlers that

support different architectures or working modes are prone to problems.

5. Vulnerabilities represented by CVE-2020-9834 and Follow-up ID

OE0908765113017 indicate that some handlers with complex logic will be

introduced with new vulnerabilities every once in a while, even if the old ones have

just been fixed.

#BHUSA @BlackHatEvents
Information Classification: General

From the perspective of engineering and hunting

1. It is important to integrate subsystem interfaces at different levels and their attack

surfaces.

2. It is important to integrate KASAN and code coverage analysis tools.

3. Many work needs to be ported to Apple Silicon platform, such as Kemon.

4. We should combine all available means such as reverse engineering, kernel

debugging, XNU resources, Apple SDKs, third-party tools, etc.

5. If you've done this, or just started, you'll find that Apple did a lot of work, but the

results seem to be similar to 2020.

#BHUSA @BlackHatEvents
Information Classification: General

Q&A

wang yu

Cyberserval

