
#BHUSA @BlackHatEvents

To Flexibly Tame Kernel 
Execution With Onsite Analysis 

Xuhua Ding 
Singapore Management University



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

Outline
• Review of existing dynamic kernel analysis techniques
• Introduction of the onsite analysis infrastructure (OASIS)
• Analysis primitives provided by OASIS
• Two examples of OASIS analyzers: function monitor and 

control flow tracer
• Discussions

2



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

Existing Approach 1: Code Instrumentation
Static code instrumentation:
• Linux kernel cooperates with GCC to add Kernel Coverage (KCOV) and 

Kernel Address SANitizer(KASAN) code into the kernel image at 
compilation time.

• KDB, KGDB

Dynamic Binary Instrumentation (DBI)
• DBI has been applied to kernel analysis as well: Cobra [S&P'06], PinOS

[VEE’07], GILK [TOOLS’02], PEMU [VEE’15].

3



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

Code Instrumentation
The Idea: to mix the analysis code and the kernel code into one 
binary. 

Pros: native control, introspection and modification
Cons: intrusive, no/weak transparency or security kernel code

kernel code

analysis code

Share execution flow and 
address space

4



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

Existing Approach 2: Hardware-assisted Analysis

Hypervisor based on Hardware Virtualization (VT-x)
• Ether [CCS’08], Gateway [NDSS’11], Spider [ACSAC’13]

Intel SMM + Performance Monitoring Unit (PMU)
• MALT [S&P’15]

TrustZone + ARM debugging facilities 
• Ninja [USENIX Security’17]

5



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

Hardware-assisted Analysis
The Idea: to trap the target to an isolated and more privileged environment, 
e.g., x86 VMX root mode, SMM mode, or ARM SecureWorld

Pros: transparency and security
Cons: inflexibility to control and introspect

- when/where to trigger the event
- introspection with semantic gap 

TargetAnalyzer

Hardware 
event

trap

Low privilegeHigh privilege

6



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

Can we combine the best of the two approaches 
without their drawbacks?

Transparency
Security

Native control, introspection,
& modification

7



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

What about this ...
We interleave the target's instruction stream with the analyzer's 
without mingling their code.

8

target execution

target execution
analysis execution



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

Execution Flow Instrumentation (EFI)
Onsite Analysis: The analyzer analyzes the target 
"as if" it were one part of the target.
• The analyzer dynamically chooses the site(s) of 

instruction flow interleaving.
• No CPU mode/privilege switches between the 

target and the analyzer.
• One-way address space isolation. The target’s 

address space is accessible to the analyzer, but 
not vice versa. 

Analyzer

Analyzer-Target
Address Space

control flow 
transfer

control flow 
transfer

Target

Target Address 
Space

9

Secure

Transparent

Native access

Cross-space



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

System Overview
OASIS: Onsite AnalySis InfraStructure
• The target kernel runs in a guest virtual 

machine.
• OASIS empowers an onsite analysis application 

to read/write/control a captured live kernel 
thread.

• Most of OASIS is implemented as a host Linux 
kernel module running in tandem with KVM. 

Onsite Environment.
• A dedicated CPU core
• a special paging hierarchy

10

OASIS

Guest VM
Onsite 
Environme
nt

Host 
Linux

TargetOASIS-Lib

Analyzer/Target
App



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

Workflow of an Onsite Analyzer
The top-level workflow
• Target thread export, onsite analysis, target thread restore. 

Onsite Analysis
• Analyzer execution, target execution, analyzer execution, target execution, ... 

11

onsite 
core

target 
core

analyzer

target OASIS Manager target

target analyzer analyzer

export restore

exit
entry

Guest VM

Onsite 
Environment

onsite analysis



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

Primitive 1: Read/Write Kernel Memory
• Application developer treats the kernel memory as part of her analyzer’s 

memory.
• Direct memory reference using kernel virtual addresses;
• Standard userspace APIs can be used.

12

void ∗ target_addr = 0xffffffff816f3090;
struct file_security_struct obj;

memcpy(target_addr, &obj, sizeof(struct
file_security_struct));

//memcpy(&obj, target_addr, sizeof(struct
file_security_struct));

write to kernel memory

read kernel memory

analyzer

kernel
memory

direct 
reference

kernel VA



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

Primitive 2: Hijack Target Execution

INT3 Probe for code breakpoint
• Replace one byte at the concerned kernel 

code with the int3 (0xCC) instruction.
• The interrupt handler transfers the control to 

OASIS Exit-Gate, a sequence of instructions 
that switch the underlying mapping so that 
the analyzer controls the CPU.

13

OASIS Exit-Gate

Exportation & Restoration. The target thread is captured
during VM-exit in the guest so that its entire CPU context
is saved to the main memory. The context includes general-
purpose registers, control registers and model specific registers
(MSRs). To export it to the onsite environment, OASIS con-
figures the VMCS of the onsite core according to the saved
target core context, except that CR3, CR4, IDTR, GDTR and
TR are the same as in analyzer execution.

The trapped target core is held by OASIS until the target
thread is restored so as to mimic the target’s CPU occupancy
in the guest and to facilitate subsequent restoration and I/O
operations. Upon the analyzer’s request to restore the target,
OASIS updates the target core VMCS structure with the onsite
core’s (including RIP) so that the target continues its execution
in the guest from its onsite environment context.

I/O Operations. In the onsite environment, the target directly
accesses the guest’s memory-mapped I/O regions and DMA
buffers via their VAs. However, port I/O operations and inter-
rupt delivery do not use virtual addresses and hence require
special treatments. The design is dependent on the underlying
I/O mechanism provided by the host OS to the guest.

In Linux KVM, I/O requests are trapped to the hypervisor
which dispatches it to QEMU to execute. When the hardware
completes the task, the external interrupt is delivered to QEMU
which notifies the hypervisor to inject the interrupt into vCPU
during VM-entry. In OASIS, the idea is to use the Manager
as the proxy to make I/O operations on behalf the target.
The target’s I/O operation in the onsite core is trapped to the
Trampoline and forwarded to the Manager holding the target
core (shown in Figure 2). The Manager executes the operation
so that it appears to the host OS as a request from the target
core. As a result, the host OS passes it to the QEMU process
supporting the guest VM. After I/O completion, the target
core’s VM re-entry is intercepted by the Manager which then
notifies the Trampoline in the onsite core to resume the target
execution and inject the external interrupt if any. Thus, I/O
operations in the onsite environment appear the same to the
target as in the guest.

System Data Structure Relocation. To support analysis on
the target’s exception and interrupt handling, OASIS relocates
the target’s IDT, GDT, and TSS to OASIS-Lib. If needed,
the analyzer can customize these relocated data structures
to monitor and control asynchronous events in the exported
target execution. For instance, an analyzer monitoring the
target’s page fault handling hooks the target’s INT#14 hander
to capture the event.

To protect transparency, OASIS prevents the target from ac-
cessing the relevant registers of the onsite core by configuring
the VMCS structure. Any software access to them is trapped
to the analyzer which returns the original content. The target
thread can still read these tables at their original VAs, because
they remain in the guest with no modifications. Updates to the
tables in the guest are intercepted so that OASIS clones the
changes to the relocated counterparts.

CAVEAT. The design above is only for target execution in the
onsite core. It has no effect on and is transparent to threads
running in the guest.

C. Cross-Flow Control Transfer

The control flow of the target can be transferred to and from
the analyzer through the exit-gate and the entry-gate, which
is the embodiment of EFI. The cross-flow control transfers
are realized by switching between T-EPT and A-EPT, which
essentially switches between the target/lib and analyzer/target
paging hierarchies. We use the vmfunc instruction1 to switch
the EPTs. The instruction following vmfunc is fetched from
the new hierarchy.

The exit-gate switches from the target/lib hierarchy to the
analyzer/target hierarchy while the entry-gate switches in the
opposite direction. The two gates are in the OASIS-Lib code
page which is mapped as writable under A-EPT in order for
the analyzer to flexibly customize the entry-gate. An OASIS-
Lib data page is used to save registers and to facilitate control
transferring to destinations more than two GB away from the
gates.

1. movq %rax, $rax_bak ;save rax
2. movq %rcx,  $rcx_bak ;save rcx
3. movq $0x0, %rax ; EPT switch
4. movq $0x9, %rcx ; 9 for A-EPT
5. vmfunc ; switch to analyzer/target
6. jmpq *off_ana(%rip) ;to analyzer

(a) Exit-gate

1. movq $0x0, %rax ; EPT switch
2. movq $0x0, %rcx ; 0 for T-EPT
3. vmfunc ; switch to target/lib
4. lea 0x6(%rip), %rax ; rax points to line 7
5. lea (%rax, %rcx, 4), %rax ;adjust rax
6. jmpq *%rax ; jmp to Line7 if rcx=0;
7. movq $rax_bak, %rax ; restore rax
8. movq $rcx_bak, %rcx ;restore rcx
9. nop ; nop slide (22 nops)

....
31.jmpq *off_tar(%rip) ; to target addr

(b) Entry-gate

Fig. 7. Assembly code of the exit-gate that passes the control to the analyzer
and the entry-gate that returns the control to the target.

Exit-gate. Figure 7(a) presents the assembly code of the exit-
gate which runs in the target flow to pass the control to the
analyzer flow. It first saves the target’s current RAX and RCX
to the pre-defined locations in the OASIS-Lib data page as the
two registers are needed to load vmfunc parameters. It then
issues vmfunc with parameters instructing the hardware to
switch to A-EPT. Finally, it jumps to the analyzer’s handler
whose address is stored in a data page mapped read-only
in T-EPT and read-writable in A-TEPT. Note that the jump
instruction is fetched and executed from the analyzer/target
hierarchy under A-EPT. The OASIS-Lib code page is mapped
as executable in both A-EPT and T-EPT. To minimize the code
size, the exit-gate does not save the target’s CPU context except
two registers used by itself. The analyzer inherits the target
CPU context and retrieves the target’s RAX and RCX from the
data page.

Entry-gate. Figure 7(b) presents the assembly code of the
entry-gate which runs in the analyzer flow to pass the control
to the target. It issues vmfunc with parameters instructing the
hardware to switch to T-EPT. Right after the switch, Line 4
to 6 check whether RCX is indeed 0 indicating a switch to
T-ETP. If so, it jumps to Line 7 to restore RAX and RCX;
otherwise it jumps to Line 31. The code is crafted in this way
to do the checking without affecting EFLAGS. The destination

1According to Intel specification, when RAX is 0, vmfunc loads the EPT
priorly prepared the hypervisor according to an index value stored in RCX.
No VM-exit is incurred during the EPT switch.

paging 
hierarchy 
switch by 
an EPT 
switch



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

Primitive 2: Hijack Target Execution
JMP Probe for control flow tracing
• Replace 13 bytes at the concerned 

kernel code with: REX.W ljmp
*offset(%rip)

• The long-jump instruction transfers the 
control to OASIS Exit-Gate via a call gate 
in the GDT.

Event interception
• A JMP probe is inserted to the entry of 

the corresponding handlers.

14

OASIS Exit-Gate

Exportation & Restoration. The target thread is captured
during VM-exit in the guest so that its entire CPU context
is saved to the main memory. The context includes general-
purpose registers, control registers and model specific registers
(MSRs). To export it to the onsite environment, OASIS con-
figures the VMCS of the onsite core according to the saved
target core context, except that CR3, CR4, IDTR, GDTR and
TR are the same as in analyzer execution.

The trapped target core is held by OASIS until the target
thread is restored so as to mimic the target’s CPU occupancy
in the guest and to facilitate subsequent restoration and I/O
operations. Upon the analyzer’s request to restore the target,
OASIS updates the target core VMCS structure with the onsite
core’s (including RIP) so that the target continues its execution
in the guest from its onsite environment context.

I/O Operations. In the onsite environment, the target directly
accesses the guest’s memory-mapped I/O regions and DMA
buffers via their VAs. However, port I/O operations and inter-
rupt delivery do not use virtual addresses and hence require
special treatments. The design is dependent on the underlying
I/O mechanism provided by the host OS to the guest.

In Linux KVM, I/O requests are trapped to the hypervisor
which dispatches it to QEMU to execute. When the hardware
completes the task, the external interrupt is delivered to QEMU
which notifies the hypervisor to inject the interrupt into vCPU
during VM-entry. In OASIS, the idea is to use the Manager
as the proxy to make I/O operations on behalf the target.
The target’s I/O operation in the onsite core is trapped to the
Trampoline and forwarded to the Manager holding the target
core (shown in Figure 2). The Manager executes the operation
so that it appears to the host OS as a request from the target
core. As a result, the host OS passes it to the QEMU process
supporting the guest VM. After I/O completion, the target
core’s VM re-entry is intercepted by the Manager which then
notifies the Trampoline in the onsite core to resume the target
execution and inject the external interrupt if any. Thus, I/O
operations in the onsite environment appear the same to the
target as in the guest.

System Data Structure Relocation. To support analysis on
the target’s exception and interrupt handling, OASIS relocates
the target’s IDT, GDT, and TSS to OASIS-Lib. If needed,
the analyzer can customize these relocated data structures
to monitor and control asynchronous events in the exported
target execution. For instance, an analyzer monitoring the
target’s page fault handling hooks the target’s INT#14 hander
to capture the event.

To protect transparency, OASIS prevents the target from ac-
cessing the relevant registers of the onsite core by configuring
the VMCS structure. Any software access to them is trapped
to the analyzer which returns the original content. The target
thread can still read these tables at their original VAs, because
they remain in the guest with no modifications. Updates to the
tables in the guest are intercepted so that OASIS clones the
changes to the relocated counterparts.

CAVEAT. The design above is only for target execution in the
onsite core. It has no effect on and is transparent to threads
running in the guest.

C. Cross-Flow Control Transfer

The control flow of the target can be transferred to and from
the analyzer through the exit-gate and the entry-gate, which
is the embodiment of EFI. The cross-flow control transfers
are realized by switching between T-EPT and A-EPT, which
essentially switches between the target/lib and analyzer/target
paging hierarchies. We use the vmfunc instruction1 to switch
the EPTs. The instruction following vmfunc is fetched from
the new hierarchy.

The exit-gate switches from the target/lib hierarchy to the
analyzer/target hierarchy while the entry-gate switches in the
opposite direction. The two gates are in the OASIS-Lib code
page which is mapped as writable under A-EPT in order for
the analyzer to flexibly customize the entry-gate. An OASIS-
Lib data page is used to save registers and to facilitate control
transferring to destinations more than two GB away from the
gates.

1. movq %rax, $rax_bak ;save rax
2. movq %rcx,  $rcx_bak ;save rcx
3. movq $0x0, %rax ; EPT switch
4. movq $0x9, %rcx ; 9 for A-EPT
5. vmfunc ; switch to analyzer/target
6. jmpq *off_ana(%rip) ;to analyzer

(a) Exit-gate

1. movq $0x0, %rax ; EPT switch
2. movq $0x0, %rcx ; 0 for T-EPT
3. vmfunc ; switch to target/lib
4. lea 0x6(%rip), %rax ; rax points to line 7
5. lea (%rax, %rcx, 4), %rax ;adjust rax
6. jmpq *%rax ; jmp to Line7 if rcx=0;
7. movq $rax_bak, %rax ; restore rax
8. movq $rcx_bak, %rcx ;restore rcx
9. nop ; nop slide (22 nops)

....
31.jmpq *off_tar(%rip) ; to target addr

(b) Entry-gate

Fig. 7. Assembly code of the exit-gate that passes the control to the analyzer
and the entry-gate that returns the control to the target.

Exit-gate. Figure 7(a) presents the assembly code of the exit-
gate which runs in the target flow to pass the control to the
analyzer flow. It first saves the target’s current RAX and RCX
to the pre-defined locations in the OASIS-Lib data page as the
two registers are needed to load vmfunc parameters. It then
issues vmfunc with parameters instructing the hardware to
switch to A-EPT. Finally, it jumps to the analyzer’s handler
whose address is stored in a data page mapped read-only
in T-EPT and read-writable in A-TEPT. Note that the jump
instruction is fetched and executed from the analyzer/target
hierarchy under A-EPT. The OASIS-Lib code page is mapped
as executable in both A-EPT and T-EPT. To minimize the code
size, the exit-gate does not save the target’s CPU context except
two registers used by itself. The analyzer inherits the target
CPU context and retrieves the target’s RAX and RCX from the
data page.

Entry-gate. Figure 7(b) presents the assembly code of the
entry-gate which runs in the analyzer flow to pass the control
to the target. It issues vmfunc with parameters instructing the
hardware to switch to T-EPT. Right after the switch, Line 4
to 6 check whether RCX is indeed 0 indicating a switch to
T-ETP. If so, it jumps to Line 7 to restore RAX and RCX;
otherwise it jumps to Line 31. The code is crafted in this way
to do the checking without affecting EFLAGS. The destination

1According to Intel specification, when RAX is 0, vmfunc loads the EPT
priorly prepared the hypervisor according to an index value stored in RCX.
No VM-exit is incurred during the EPT switch.

paging 
hierarchy 
switch by 
an EPT 
switch



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

Exportation & Restoration. The target thread is captured
during VM-exit in the guest so that its entire CPU context
is saved to the main memory. The context includes general-
purpose registers, control registers and model specific registers
(MSRs). To export it to the onsite environment, OASIS con-
figures the VMCS of the onsite core according to the saved
target core context, except that CR3, CR4, IDTR, GDTR and
TR are the same as in analyzer execution.

The trapped target core is held by OASIS until the target
thread is restored so as to mimic the target’s CPU occupancy
in the guest and to facilitate subsequent restoration and I/O
operations. Upon the analyzer’s request to restore the target,
OASIS updates the target core VMCS structure with the onsite
core’s (including RIP) so that the target continues its execution
in the guest from its onsite environment context.

I/O Operations. In the onsite environment, the target directly
accesses the guest’s memory-mapped I/O regions and DMA
buffers via their VAs. However, port I/O operations and inter-
rupt delivery do not use virtual addresses and hence require
special treatments. The design is dependent on the underlying
I/O mechanism provided by the host OS to the guest.

In Linux KVM, I/O requests are trapped to the hypervisor
which dispatches it to QEMU to execute. When the hardware
completes the task, the external interrupt is delivered to QEMU
which notifies the hypervisor to inject the interrupt into vCPU
during VM-entry. In OASIS, the idea is to use the Manager
as the proxy to make I/O operations on behalf the target.
The target’s I/O operation in the onsite core is trapped to the
Trampoline and forwarded to the Manager holding the target
core (shown in Figure 2). The Manager executes the operation
so that it appears to the host OS as a request from the target
core. As a result, the host OS passes it to the QEMU process
supporting the guest VM. After I/O completion, the target
core’s VM re-entry is intercepted by the Manager which then
notifies the Trampoline in the onsite core to resume the target
execution and inject the external interrupt if any. Thus, I/O
operations in the onsite environment appear the same to the
target as in the guest.

System Data Structure Relocation. To support analysis on
the target’s exception and interrupt handling, OASIS relocates
the target’s IDT, GDT, and TSS to OASIS-Lib. If needed,
the analyzer can customize these relocated data structures
to monitor and control asynchronous events in the exported
target execution. For instance, an analyzer monitoring the
target’s page fault handling hooks the target’s INT#14 hander
to capture the event.

To protect transparency, OASIS prevents the target from ac-
cessing the relevant registers of the onsite core by configuring
the VMCS structure. Any software access to them is trapped
to the analyzer which returns the original content. The target
thread can still read these tables at their original VAs, because
they remain in the guest with no modifications. Updates to the
tables in the guest are intercepted so that OASIS clones the
changes to the relocated counterparts.

CAVEAT. The design above is only for target execution in the
onsite core. It has no effect on and is transparent to threads
running in the guest.

C. Cross-Flow Control Transfer

The control flow of the target can be transferred to and from
the analyzer through the exit-gate and the entry-gate, which
is the embodiment of EFI. The cross-flow control transfers
are realized by switching between T-EPT and A-EPT, which
essentially switches between the target/lib and analyzer/target
paging hierarchies. We use the vmfunc instruction1 to switch
the EPTs. The instruction following vmfunc is fetched from
the new hierarchy.

The exit-gate switches from the target/lib hierarchy to the
analyzer/target hierarchy while the entry-gate switches in the
opposite direction. The two gates are in the OASIS-Lib code
page which is mapped as writable under A-EPT in order for
the analyzer to flexibly customize the entry-gate. An OASIS-
Lib data page is used to save registers and to facilitate control
transferring to destinations more than two GB away from the
gates.

1. movq %rax, $rax_bak ;save rax
2. movq %rcx,  $rcx_bak ;save rcx
3. movq $0x0, %rax ; EPT switch
4. movq $0x9, %rcx ; 9 for A-EPT
5. vmfunc ; switch to analyzer/target
6. jmpq *off_ana(%rip) ;to analyzer

(a) Exit-gate

1. movq $0x0, %rax ; EPT switch
2. movq $0x0, %rcx ; 0 for T-EPT
3. vmfunc ; switch to target/lib
4. lea 0x6(%rip), %rax ; rax points to line 7
5. lea (%rax, %rcx, 4), %rax ;adjust rax
6. jmpq *%rax ; jmp to Line7 if rcx=0;
7. movq $rax_bak, %rax ; restore rax
8. movq $rcx_bak, %rcx ;restore rcx
9. nop ; nop slide (22 nops)

....
31.jmpq *off_tar(%rip) ; to target addr

(b) Entry-gate

Fig. 7. Assembly code of the exit-gate that passes the control to the analyzer
and the entry-gate that returns the control to the target.

Exit-gate. Figure 7(a) presents the assembly code of the exit-
gate which runs in the target flow to pass the control to the
analyzer flow. It first saves the target’s current RAX and RCX
to the pre-defined locations in the OASIS-Lib data page as the
two registers are needed to load vmfunc parameters. It then
issues vmfunc with parameters instructing the hardware to
switch to A-EPT. Finally, it jumps to the analyzer’s handler
whose address is stored in a data page mapped read-only
in T-EPT and read-writable in A-TEPT. Note that the jump
instruction is fetched and executed from the analyzer/target
hierarchy under A-EPT. The OASIS-Lib code page is mapped
as executable in both A-EPT and T-EPT. To minimize the code
size, the exit-gate does not save the target’s CPU context except
two registers used by itself. The analyzer inherits the target
CPU context and retrieves the target’s RAX and RCX from the
data page.

Entry-gate. Figure 7(b) presents the assembly code of the
entry-gate which runs in the analyzer flow to pass the control
to the target. It issues vmfunc with parameters instructing the
hardware to switch to T-EPT. Right after the switch, Line 4
to 6 check whether RCX is indeed 0 indicating a switch to
T-ETP. If so, it jumps to Line 7 to restore RAX and RCX;
otherwise it jumps to Line 31. The code is crafted in this way
to do the checking without affecting EFLAGS. The destination

1According to Intel specification, when RAX is 0, vmfunc loads the EPT
priorly prepared the hypervisor according to an index value stored in RCX.
No VM-exit is incurred during the EPT switch.

Primitive 3: Resume Target Execution
Resuming the target.
• Analyzer prepares the CPU context for 

the target execution (including RIP)
• It returns the control to the target by 

jumping to OASIS Entry-Gate, a 
sequence of instructions that switches 
the underlying mappings so that the 
target gets the control. 

15

OASIS Entry-Gate

switch to 
target’s 
paging 
hierarchy

jump to the 
target 
destination



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

Example 1: Kmalloc() monitoring
• To analyze how kmalloc() is called in a kernel thread

16

void main ()
{
//initialization
....

OASIS_set_INT3(kmalloc_addr);
OASIS_resume_targ(&CPU);
return;

}

void int3_handler()
{

//analysis workload
...

if (end)
OASIS_rm_INT3(&kmalloc_addr);

OASIS_resume_targ(&CPU);
return; 

}

The handler function is called when the INT3-probe is encountered in the target 
kernel thread execution inside the onsite environment.



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

Example 2: Control Flow Tracing
• To track the control flow of the target from the capturing point

17

void main ()
{
//initialization
....

OASIS_set_JMP(bb_exit);
OASIS_resume_targ(&CPU);
return;

}

void jmp_handler(){

...   //analysis workload

...   //find next block to run

//remove the current one
OASIS_rm_JMP(bb_exit);
//set the new prob
OASIS_set_JMP(next_bb_exit);
// resume target from the next block.
OASIS_resume_targ(&CPU);
return;

}

block n

block 
n+1

block 
n+2

handler

Target

handler

Analyzer

jmp probe

jmp probe

jmp probe



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

Demo 1: Introspection (Screenshot)

18

Target in Guest VM

Output from guest kernelAnalyzer in host

sa
me co

ntent

sa
me co

ntent

reference



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

Demo 2: Breakpoint + tracing (screenshot)

19

Target in Guest VM

Output from guest kernelAnalyzer in host

1st triggering 

2nd triggering 

5 bbs traced



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

Discussions
Potential Applications: 

• Virtual machine introspection
• Kernel debugger
• Cross-space malware analysis
• Attack scene forensics and 

response

20

Features: 
• Thread-centric, “surgical” 

analysis,
• Not for large-scale code-centric 

analysis such as profiling
• Strong security and 

transparency 



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

Future Work
More primitives
• data breakpoint, multi-core
Migration to ARM Platform
• Feasible. 
• Caveat: ARM does not have vmfunc instruction. A user space 

program cannot issue hypercalls.

21



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

Black Hat Sound Bytes 
1. With OASIS, one can easily develop and run a user-space
onsite analyzer to dynamically and natively read, write and control 
a user/kernel thread in a VM. 
• No modification of the kernel is needed. No instrumentation. 
• Strong security and transparency.

2. Suitable applications for onsite analyzers:
• VMI, kernel debugging, cross-space malware analysis, live kernel 

forensics, incident response etc.

22



#BHUSA @BlackHatEvents
Information Classification: General

SMU Classification: Restricted

• Jiaqi Hong, Xuhua Ding, "A Novel Dynamic Analysis Infrastructure to 
Instrument Untrusted Execution Flow Across User-Kernel Spaces", IEEE 
Symposium on Security and Privacy, 2021

• OASIS resources: https://github.com/OnsiteAnalysis/OASIS 

23

Reference



#BHUSA @BlackHatEvents

xhding@smu.edu.sg


