blgc’:k hat

B e

ELF Section Docking
Revisiting Stageless Payload Delivery

Dimitry Snezhkov,
X-Force, IBM Corporation

######

0

blackhat

= - ==

Dimitry Snezhkov, X-Force, IBM Corporation
'/§
N
S

* Research (Offense / Defense)
* Tooling Support

0

blackhat

= - ==

* Qverview of static payload bundling mechanisms in Linux.

« Evolution of static payload embedding.

* Improving viability of static payloads in delivery.

« Binary compatibility of ELF sections as a unit of payload.

« ELF section docking: Payload attachment factory at adversarial sites.

« Detection, evasion successes and pitfalls of the docking approach
« ELFPack PoC demo

Information Classification: General

0

blackhat

= - ==

Dynamic Static
« Generated at runtime » Bundled with delivery mechanisms
« Fetched at runtime from external (to loader) source * Time-released
+ Light(er) loader + Less chances of detection due to close coupled
+ Less chance of detection due to absence of embedded variance
payload + Less detonation dependencies (environment)
+ More flexibility + Less moving parts

+ Better activation / dormancy once deployed
- More chance of detection with use

- More exposed loading mechanism - Heavier close coupled loader, greater size
- More moving parts - More chance of detection due to embedded payload
- More detonation dependencies (environment). - Less flexibility (runtime awareness and variance)

- Long haul activation / dormancy issues.

it’s a dial ...

Information Classification: General

0

blackhat

= - ==

Dynamic

Static

Deploy stager
Fetch payload

N =

Maybe delete stager

Load payload (maybe, on itself)

« Empirically, more prevalent (short and long haul):

i

« Empirically, less widespread in long haul implants
* Time-released

1. Deploy the bundle (maybe, on itself) (—

Dynamic is well understood

Information Classification: General

Can we improve Static delivery

0

blackhat

= - ==

 Why is static out of favor
 (Can its traits be improved
* Can we turn downsides into an upside

Desired Dynamic Traits Undesired Static traits
+ Less chance of detection due to - Heavier close coupled loader, greater size
absence of embedded payload - More chance of detection due to embedded
N (e payload
More flexibility - Less flexibility (runtime awareness and variance)

—
—

Information Classification: General

0

blackhat

= - ==

Hex-binary inclusion compilation and linking: Directly in default .data section via compiler

const datal[3432] = {
Manually or with tools like bin2c or 0x43, 0x28, 0x41, 0x1l, 0xa3, Oxff,

0x00, oxff, 0x23

xxd -i payload.bin > payload.h b

Easily traced at runtime debugging or static binary inspection

Information Classification: General

0

blackhat

= - ==

Hex-binary inclusion compilation and linking: In a separate ELF section.

char stack[10000] __attribute__ ((section ("binstack"))) = {

e Place pay|Qad data or certain 0x43, 0x28, 0x41, 0x1l, 0xa3, Oxff,

variables in additional sections. 0x00, Oxff, 8x23 };

. Achieved Wlth 5 compiler int init_data _ attribute__ ((section ("bindata"))) = 0;
dependent mechanism. In geg, it's 7"
done via attribute 'S. /* Initialize stack pointer x/

init_sp (stack + sizeof (stack));

/* Initialize initialized data x/
memcpy (&init_data, &data, &edata - &data);

Can be traced at runtime debugging or static binary inspection.

Information Classification: General

0

blackhat

= - ==

Linker-binary inclusion: Assembler and linker specific directives.

Assembler dependent .incbin-like directive .section .bindata
can create a section and embed a payload. .global payload_start

.type payload_start, @object
Tools: .section .binddata
* gcc -c payload.s -balign 64
or payload_start:

. .incbin "payload.bin"

* |d-r-b payload.bin -0 payload.o balign 1

payload_end:

.byte 0

Note: fully functional payload file. Path to
create “fat” binaries for packing.

int main(void) {
extern uint8_t payload_start;

. . uint8_t xptrPayload = &payload_start;
Retrieval in code can be done as follows:

Information Classification: General

0

blackhat

= - ==

Linker-binary inclusion: Assembler and linker specific directives (Cont.)

/* Raw image data for all embedded images x/

#undef EMBED

#define EMBED(_index, _path, _name)
extern char embedded_image_ ## _index ## _datall;
extern char embedded_image_ ## _index ## _len[];

More ergonomic tools exist _asm__ (".section \".rodata\", \"a\", " PROGBITS "\n\t"
. "\nembedded_image_" #_ index "_data:\n\t"
* INCBIN from @graphitemaster, same “.incbin \"" _path "\"\n\t"
. "\nembedded_image_" #_ index "_end:\n\t"
|dea. ".equ embedded_image_" #_ index "_len, "

"(embedded_image_" # index "_end - "
" embedded_image_" #_index "_data)\n\t"
".previous\n\t");

In-code solution to construct multi-sectional EMBED_ALL
ELF payload may be as fO”OWS' /* Image structures for all embedded images %/

#undef EMBED
#define EMBED(_index, _path, _name) {
.refcnt = REF_INIT (ref_no_free),

Note PROGBITS directive, will be important. .name = _nane,

.data = (userptr_t) (embedded_image_ ## _index ## _data),
.len = (size_t) embedded_image_ ## _index ## _len,

H

static struct image embedded_images[] = {
EMBED_ALL

X

Information Classification: General

0

blackhat

= - ==

Compiler / linker-based payload are not ideal.

The process of embedding in code is tightly coupled to the creation of payload loader.

* Challenges with payload format changes

* By default, data carrying section have PROGBITS flags set on it, and it will be PT_LOAD’ed into memory
by the OS loader by default.

We do not want this (Linking = Detection)

There are tradeoffs

Information Classification: General

0

blackhat

= - ==

ELF sections and load flags

Type of section and flags set on the new
section determine whether OS loader
loads it in the memory upon executable
launch.

Some sections are loaded automatically
by default, others are not.

Offense can take advantage of that!

Information Classification: General

Memory

Not loaded
to memory L

Elf Header

PHDR

INTERP

™\

T

alignment

DYNAMIC

alignment

PT

LOADO

LOAD1

0

blackhat

= - ==

Avoiding default OS loader actions

We can:

* Avoid setting flags on sections that assume default loading in memory.
 Use a different type of section that does not load in memory.

* Asanexample —SHT_NOTE type, from ELF docs:

A vendor or system engineer might need to mark an object file with special
Information that other programs can check for conformance or
compatibility. Sections of type SHT_NOTE and program header elements of
type PT_NOTE can be used for this purpose.

Information Classification: General

0

blackhat

SN ==

Avoiding default OS loader actions

SHT NOTE is widely used in Linux system binaries:

+0 +1 +2 +3

$ readelf —--sections /bin/tar | grep NOTE namesz 7
[2] .note.gnu.bul...] NOTE 00000000000002c4 000002c4 P ” Fb Gasottolie
[3] .note.ABI-tag NOTE 00000000000002e8 000002e8
type 1
[2] .note.ABI-tag NOTE 0000000000400254 |[0OOOO254 -y é _i -
00000000000NNR20 0OOOAAAAAOONRO A 0 4 e 1= b
namesz 7
name namesz descsz
i : descsz 8
[:::] r_____l_____j type 3
name X L z
C (o] \0 | pad
desc word0

word1

Information Classification: General

0

blackhat

= - ==

Compiler is a problem: Decoupling payloads

So far, we have:
* Created a dormant section in ELF image (in code)
* Avoided loading it in memory by the OS loader.

data

However: sy::b notes
« Section €= structure of the smemoy | s
final ELF

* Tight relationships of memory

addresses from the loader code @
'@

Information Classification: General

0

blackhat

= - ==

Compiler is a problem: Decoupling payloads

What if we:

* Create an ELF section with embedded payload outside of the loader compilation workflow
* Attach that section to a loader binary later

This would:
* Break the address offset relationship of the loader code with the section.

 Teach the loader how to find and load its foreign data section, effectively "docking" a
standalone payload to a loader in a loosely coupled manner.

Information Classification: General

0

blackhat

= - ==

Compiler is a problem: Decoupling payloads, Avoiding OS loader

* Loader should not be entangled with payload semantics

* Loading and executing binary payload without modifying loader code to tailor to new payloads via binary
section compatibility.

e Loading without using OS loader |d.so (ELF loader) which is loading payload in memory automatically.

bes e j Achieves ABI compatible
Not loaded _f Symisb notes 9 S—— stra In-field payload
il | — (re-)attachment.
N\ o3
A Before Now
-

O Orr o
(=0 o =]
-0 - -0

[O O
O O O

>

Information Classification: General

0

blackhat

= - ==

Binary Compatibility at Section level

* |njector/bundler which will introduce
a payload section to the loader
without either one operating at code

level, only binary compatibility

 Loaderis aware how to
load a payload section but not what

the payload is.

Information Classification: General

I0I0I00

=

Compiled Loader ELF binary Sectional ELF packer

No source code

000

TEMPLATE

I0H0I00

| !
Sectional ELF loader b

Packer as in combiner not UPX/compressor

Compiled payload ELF binary
No source code.

1010101 | 8
1010101010
» + » 1010101010
1010101010
1010101010

¥

bss
Not loaded S
po TRty strab

notes

0

blackhat

= - ==

Static Elf loader:

* Shipped on its own Possible Wins 9000 | pieras incombiner not UPXfcompressor

* Devoid of payloads h

* Only mechanisms to load a section on demand and
bootstrap the payload from it.

Compiled payload ELF binary

Compiled Loader ELF binary Sectional ELF packer
No source code.

No source code

= o+

Sectional Payload: $

* Created separately — -
* Bundled with loader gt any time as a static stage seciontetstoscer |Gl | S
* Better dormancy control with an injector.

* Better packing. No overhead on detection for conventional packer processing and code.
In memory — not tmpfs for unpacks. Fat binaries possible (multiple sections).
* Be a full ELF executable itself if needed

Injector can broker attachment of sections from several binaries (dormant stages) to construct a
section and inject into the loader.

Information Classification: General

0

blackhat

= - ==

,i ; Packer as in combiner not UPX/compressor

Compiled payload ELF binary

Compiled Loader ELF binary Sectional ELF packer
No source code.

22 | Sectional ELF Injector/Packer: Nosoure coe
b * Streamlined payload generation pipeline » + » [
* Infield payload to loader attachment without compiler $

5)
Not loaded
10 memory

AU

oooo B Sectional ELF Loader:
h * Loads full ELFs or shellcode from reading and parsing its own binary.
Tracing does not see mprotect()'s on mapping into memory and loading
* Airgapped separation between where the payload is and how it’s loaded.
* Ability to accept and forward arguments to sectional payloads

A Binary payload in section
MM ¢ Canbea fully functional ELF binary with much less constraints (3" party tooling, linking intact).

1010101010

Miid * Can be uniquely obfuscated without regard to space (.NOTE records are variable size for example)
e Can be memory-resident or extracted to FS or run as part of a table of contents (fat payload loader).
* Does not need to be relocated when preparing for execution.
* Cross-attachment binary evasion chain: Loader A can read Loader B’s payload.

Information Classification: General

0

blackhat

= - ==

Option A : SYS Memfd create ()
- Done with libreflect but may be done with Zombieant pre-loader
- More detectable at levels:
- anonymous file in /proc/self/fd/
- uses sys_memfd_create (syscall #319)
- Does fork/exec, BPF tracing for execve() will record.

Option B: User land Exec (https://grugg.github.io/docs/ul exec.txt)
- Done with libreflect for now. Nice interface.
- Hollows out the loader and overlays with payload.
- No sys_enter_exec /sys_exit_exec calls. BPF tracing for execve() not catching
- Downside: you cannot daemonize via loader (loader memory is gone on exec image overlay)
but the payload can daemonize itself when launches:
the beauty of shipping ELF binaries vs. shipping shellcode ©

Information Classification: General

https://grugq.github.io/docs/ul_exec.txt

blgc’zk hat

= - ==

DECIMAL HEXADEC IMAL DESCRIPTION

(SYSWY)
created: 2043-B2
: rmmprPSC1un tupw

O
) L on oo 3

CO (_T\ [T O

D 0

' X0 ELF, 64-bit LSE shared object,

184 x2C bix header, header size: 6
RaW Payload + loobo) Duta Hddr ess: BxEDAB896E, Entry Point: Bx587< _
3797062 36094, created: 1989-885-21 l

Bx5BEDZ bix header, header size: &4 by

 475429: 5, Data Address: Bx24@8B930, Entry Point: Mﬁdt. (CRC: Bx8 86 image name: (
I I ett e D . dxHBE Basebd standard index table

® Unix path: fusr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin: /usr/games: /usr/local/gam
es:/sustem/bin: /Eubtem!Sblﬂ /sustem/=xbin
668544 AxH33 Basebd standard index table
b88416 BxAB Basebd standard index table
ﬁpoqqo BxAGY Unix path: Jusr/bin/ntlm_auth
688 AxABH3 1 PEM certificate
ledEd AxHAECEY DES SP2, little endian
691686 BxAED DES SP1, little endian
694419 BxR97A3 PEM RSA private key
694248 BxA97ED SHARZ256 hash constants, little endian
694656 BxA99380 Basebd standard index table
Tada3y BxABEZS Unix path: /sus/devices/system/cpu/cpuid/cpufreq/cpuinto_max_freq
784994 BxAC1EZ Unix path: /sus/class/net/%s/speed
TR5422 ﬂXHLJSE Unix path: fdeufdlqkfbg uuid
706687 Copuright string: "Copyright 1995-2813 Jean-loup Gailly and Mark Adler "
70977" UAHDduF Copyright string: "Copyright 1995-2013 Mark Adler "
712648 B=xADFCA CRC32 polynomial table, little endian
716736 BxAEFCH CRC32 polynomial table, big endian
724288 BxBBD40 Unix path: /usr/local/bin:/bin:/usr/bin
727202 BxB18AZ Unix path: /var/run/nscd/socket

=
B l"_) o= -
Lo X CO X

HEXRDECIMAL UDESCRIPTION

1

6d-bit LSEB shared object, AMD x86-64, wversion 1 (GNU/Linux)
path: /home/dewv/Codeselfpack/src/elfldr.cpp
path: /home/dew/Code/elfpack/src/elfldrlib.cpp

Sectioned Payload
(mettle)

Information Classification: General

=

L O I

[]

N
(oA

bl:fl?:k hat

= - ==

Raw Payload
(mettle)

Sectioned Payload
(mettle) |

Information Classification: General

§ELFPacker

100.0

LFLoader

 Payload (Mettle)

LFPack’d Loader + Payload

0

blackhat

= - ==

More detection and evasion

BPF filter based YARA static scan ELF

(venv) - $ python3 elfpack_yar.py
== SHT_NOTES Sections ===

TracepOintS _> Sysca”S: :;te.gnu.build—id _“: 36 bytes

.note.ABI-tag : 32 bytes
.note.gnu.buf[...] : 1042180 bytes
.note.gnu.buf : 40 bytes

Sys_enter_memfd_open TR 007 60 65 6B (5 60 65 09 60 £ (1 69 60 5 1)
Sys_exit_memfd_open
Sys_enter‘_exec* Ran 2 tests in 0.027s

OK

Information Classification: General

0

blackhat

= - ==

Information Classification: General

0

blackhat

= - ==

« Section docking presents desired features for payload delivery

« Static vs. dynamic payload loading is a dial not an either or.

« Overcome limitations of packers for in-memory unwrap and detection
« Detect ELF packing at runtime and static.

« QOvercome detections with packing and encryption.

Information Classification: General

0

blackhat

= - ==

Code:

Information Classification: General

https://github.com/xforcered/elfpack

