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Abstract. Protocol Inference is the process of gaining information about
a protocol from a binary code that implements it. This process is use-
ful in cases such as extraction of the command and control protocol of a
malware, uncovering security vulnerabilities in a network protocol imple-
mentation or verifying conformance to the protocol’s standard. Protocol
inference usually involves time-consuming work to manually reverse en-
gineer the binary code.
We present a novel method to automatically infer state machine of a net-
work protocol and its message formats directly from the binary code. To
the best of our knowledge, this is the first method to achieve this solely
based on a binary code of a single peer. We do not assume any of the
following: access to a remote peer, access to captures of the protocol’s
traffic, and prior knowledge of message formats. The method leverages
extensions to symbolic execution and novel modifications to automata
learning. We validate the proposed method by inferring real-world proto-
cols including the C&C protocol of Gh0st RAT, a well-known malware.

Keywords: Protocol Inference · Network Security · Symbolic Execution
· Automata Learning · Network Protocols.

1 Introduction

The process of gaining information about a communication protocol from the
binary code that implements it is called Protocol Inference. Such a process is
employed in several practical scenarios. Many malwares set up a command and
control (C&C) channel with the attacker’s server. Over that channel they re-
ceive commands from the server and send information gathered from the victim
machine. Oftentimes, knowing the commands expected to be received by the
malware is helpful to analyze the goals and logic of the malware. Nonetheless,
these commands may not be easily obtained if no prior traffic of the C&C chan-
nel has been captured or the attacker server is no longer operational. In such
cases one needs to infer the C&C protocol from the malware’s binary only.

Additionally, security vulnerabilities of a network protocol software are often
caused by deviations from the intended protocol’s logic. For example, a vulnera-
bility in an implementation of a server program may accept data from the client
before the user was authenticated or after a message that closes the connection is
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received. Such deviations may be even intentional and pose an undesirable back
door to the program. Moreover, improper implementation of a protocol logic
may lead to non-conformance to other implementations of the same protocol.
To reveal such improper implementations of a protocol, one needs to infer the
protocol implemented by the software and compare it to the protocol’s desired
logic.

In this work we propose PISE: a method to automatically infer the proto-
col directly from a given binary code. The method extracts the protocol state
machine and the formats of each of the protocol’s message types. The method
leverages an extended L* algorithm [2] to learn the protocol’s state machine.

L* is based on a Teacher and a Learner, whose goal is to reveal the state
machine of an unknown language (in our case, the sequences of the protocol’s
message exchanges). The Learner presents membership queries and equivalence
queries that the Teacher answer.

To answer the algorithm’s membership queries we use modified symbolic ex-
ecution of the binary program. The modifications track the program’s network
activity and guide the symbolic execution through a messages exchange accord-
ing to the Learner’s query. The symbolic execution is also leveraged to uncover
messages that may follow a valid message exchange. Predicates representing the
protocol’s message types are derived based on these example messages. As new
message types are revealed they are fed back to the L* algorithm to extend the
protocol’s state machine. Equivalence queries of the L* algorithm are answered
using a standard sampling approximation using membership queries.

We emphasize that the only input to the proposed method is the binary code
of a single peer of the protocol. In particular, we do not assume: (1) Access to
the binary code of the remote peer. (2) Access to network traffic recordings that
contain valid protocol sessions. (3) Access to an online instance of the remote
peer. Namely, we cannot recreate valid session traffic. (4) Prior knowledge of
messages’ formats and the partition to message types.

To the best of our knowledge, PISE is the first protocol inference method
that has none of the above assumptions. We believe that the lack of such as-
sumptions makes our method widely suitable for many real-world use cases of
protocol inference. For example, often when the C&C protocol of a malware is
analyzed, the protocol peer, i.e. the C&C server, is unobtainable nor it is online,
furthermore past malware traffic has not been recorded. Hence, the binary code
of the malware is the only source of information about the protocol.

Previous Works There are several published works that deal with the problem
of learning information about a network protocol. The approach presented in [8]
uses recorded network traffic as input. It analyzes the traffic and uses heuristics
to extract different protocol fields.

To infer information about the protocol that may not be captured in recorded
traffic only, several methods [4] [3] [16] [9] were introduced that combine the
recorded traffic with execution traces of the server, allowing them to learn more
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about the messages’ formats, and even gain some insights about the semantics
of messages and message fields.

All of these works do not deal with the problem of learning the protocol state
machine. This was the motivation for the work [7] which introduced Prospex.
This work extended previous works in two directions: First, they developed a
mechanism to identify messages of the same type. They use this information
to partition messages with similar role in the protocol into clusters. The second
extension is a method to infer the state machine of the protocol. Prospex method,
like all the mentioned methods, requires captures of protocol’s traffic.

Another important contribution is the work [6] that introduced a method
for on-line inference of botnet C&C protocol, using active instances of it. They
chose to represent a protocol as a Mealy machine and used L* extension by [14]
for learning mealy machines. They actively query the control server responses
for a sequences of messages. They also introduced caching and prediction opti-
mizations to L* in order to reduce the amount of membership queries sent to
the server. Their work, as an on-line method, assumes the server is available
and answers appropriately. They also assume known message formats by using
previous work [4].

Another related work is the work [1] that introduces a method to infer a Java
class specification (order of method calls) using model checking and L*, which
is similar to what we apply in our work. In their case, however, the alphabet
(the methods) is known in advance. The work [10] utilizes L* for the purpose of
model checking and suggests learning-based algorithms to automate assumption
generation in assume-guarantee verification. The work [12] even extended this
to include alphabet refinement, a technique to infer interface alphabets.

Another work called MACE [5] presents a method to learn a state machine
of a server using L* and symbolic execution. As in our method, they use L*
extension for inferring Mealy state machines [14] and use symbolic execution
to uncover messages that the client may send. There are, however, two main
differences to our method: First, MACE assumes a known abstraction function is
available that can extract the message type out of the server’s response. Second,
MACE assumes a running server is available, that can answer client requests.
We do not have these assumptions.

2 Preliminaries

2.1 Deterministic Finite Automaton (DFA) Learning

A deterministic finite automaton (DFA) M is a five-tuple, (Q,Σ, δ, q0, F ), all of
them nonempty, whereas: Q is a finite set of states, Σ is a finite set of input
symbols (alphabet), δ : Q×Σ → Q is a transition function, q0 ∈ Q is an initial
state and F ⊆ Q is a set of accept states. Let w = σ1...σn be a string over the
alphabet Σ. We say that M accepts w if there exist r0, ..., rn ∈ Q such that
r0 = q0, rn ∈ F and ∀0 ≤ i ≤ n− 1, ri+1 = δ(ri, σi+1).

Let Σ∗ = {σ1...σn | σi ∈ Σ,n ≥ 0} be the set of all finite strings over the
alphabet Σ. We define L(M) = {w ∈ Σ∗ | M accepts w} as the language of M .
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A set of words L ⊆ Σ∗ is a regular language iff there exists DFA M such that
L = L(M).

Automata learning identifies an unknown regular language L by learning a
DFA M such that L(M) = L. The L* algorithm [2] solves this problem. It as-
sumes a minimally adequate Teacher, which is an oracle that can answer two
types of queries: Membership query and Equivalence query. In a Member-
ship query, the Teacher should indicate whether a given word w is in L or not.
In an Equivalence query, the Teacher should indicate, given a conjectured DFA
M ′, whether L(M ′) = L, and provide a counterexample otherwise (a word in
the symmetric difference of L and L(M ′)).

In its internal data, the L* algorithm saves a description of the currently
learned automaton in a structure called observation table. The observation table
is updated during the learning process according to the answers of the Teacher.

The basic L* algorithm assumes Σ (alphabet) is known. Several works [12]
[13] propose extended algorithms to deal with an alphabet that is revealed (or
grows) during the the execution of the algorithm.

2.2 Symbolic Execution

Symbolic execution is a static method of analyzing a program. During the anal-
ysis it determines what constraints the program’s input must satisfy in order
to execute each execution path in the program. This is done by following the
program’s code assuming symbolic values for inputs. A symbolic state is defined
to contain the current symbolic values for each variable in the program, as well
as constraints that should hold in order to reach that state.

Symbolic execution begins with a single initial state located at the entry
point of the program. The execution happens by stepping the set of states and
generating new descendant states. Stepping a single state may result with mul-
tiple new descendant states, if, for example, the parent state corresponds to a
conditional branch. Before stepping a state, the symbolic execution may verify
that the current constraints of the state are satisfiable. This verification is done
in order to discard states that represent infeasible paths, representing impossi-
ble executions. A symbolic state can represent an execution during which the
program failed and terminated, namely exits with a non-zero return value. We
call such a symbolic state an abort state.

3 Problem Definition

Our goal, given a binary code of a program, is finding a DFA that accepts a
language L, where each word in L matches a sequence of message types received
and sent by the program. We say that this DFA is the state machine of the
protocol implemented by the program. We say that a concrete run of the program
is valid if and only if it does not finish in an abort state.

We denote by S and R the finite set of messages that may be sent and
received by the program, respectively. S and R are disjoint. S and R are finite
because messages are limited in length (See Assumption 1 below).
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A session is a sequence of messages m1 . . .mk such that ∀1 ≤ i ≤ k,mi ∈
S∪R. We say that a session m1 . . .mk is valid for the program if and only if there
exists a valid run of the program along which the same sequence of messages are
sent or received in exactly the same order as in m1 . . .mk. An empty session is
considered valid. Valid sessions are prefix-closed, meaning that if m1 . . .mk is a
valid session then ∀1 ≤ l ≤ k − 1, m1 . . .ml is also a valid session.

Messages are partitioned into subsets of message types according to their
semantics in the protocol and their effect on the protocol state machine. Let TD

be a partition of message types of D where D ∈ {R,S}. Given a message m ∈ D,
we denote by type(m) the pair ⟨D, t⟩ such that t ∈ TD and m ∈ t. We call such
a pair ⟨D, t⟩ a Message Type. t is finite because both S and R are finite.

We define the alphabet of the protocol as a finite set of pairs:

ΣL = {⟨T, t⟩ | t ∈ TD, D ∈ {R,S}}

Given a session m1 . . .mk such that ∀1 ≤ i ≤ k,mi ∈ S ∪ R, we define
Θ : (S ∪ R)∗ → Σ∗

L:

Θ(m1 . . .mk) = type(m1) . . . type(mk)

We abstract all valid sessions to a regular language L over the alphabet ΣL:

L = {Θ(m1 . . .mk) | m1 . . .mk is a valid session}

Note that L is prefix closed because valid sessions are prefix closed. Note that
R and S, as well as their partitions TS and TR, are unknown in advance, hence
the alphabet Σ of the DFA in unknown in advance. It is the task of our method
to uncover ΣL as it determines the DFA.

Assumptions We assume the following about the input to our method:

1. Message Length is limited: there exists N such that no message in the
protocol to be inferred is longer than N bytes. This is a reasonable assump-
tion since concrete messages must be finite. In practice, our method allow a
message to be longer than N bytes, as long as the first N bytes may allow
to infer its message type. This assumption is required since symbolic lengths
are computationally difficult to infer.

2. Protocol Regularity: the protocol can be modeled as a DFA (See Sec-
tion 2.1) over ΣL in terms of message types allowed from each state. For-
mally, L is regular language. If L is not regular, our algorithm will fail or
will never complete the inference.

4 Learning a DFA of a Protocol (Exact Version)

The learning of the protocol’s DFA is based on a modified version of the L*
algorithm [2]. We modify the algorithm’s queries in order to uncover the alphabet
Σ, that is, the message types of the protocol. Initially, Σ is ∅.
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For ease of exposition, we assume here a Teacher that is capable of answer-
ing the queries we present. However, this assumption is unrealistic when both
the state machine and the alphabet ΣL are unknown. In Section 5 we propose
suitable approximations for the Learner and the Teacher.

Modified Membership Queries The classical membership query returns
True or False, indicating if a given w is in L or not. We modify it as fol-
lows: If w ∈ L, True is returned together with a set Cont(w) of message types
⟨D, t⟩ such that w · ⟨D, t⟩ ∈ L. If w /∈ L, False is returned. The set Cont(w)
may reveal new alphabet symbols.

Modified Equivalence Queries In a classical equivalence query the Learner
provides a conjectured DFA M over alphabet ΣM = Σ. True is returned if L =
L(M). Otherwise, False is returned and a counterexample w in the symmetric
difference of L and L(M) is returned as well. We modify it as follows: False
is returned if there exist w ∈ Σ∗

M for which one of the following hold: (1) w
is in the symmetric difference of L and L(M); (2) A set Miss(M) ̸= ∅ exists
such that for all σ ∈ Miss(M), σ /∈ ΣM but w · σ ∈ L. In the former case, w
is returned as a counterexample. In the latter case, every w · σ is considered a
counterexample. True is returned if for all w ∈ Σ∗

M , neither (1) nor (2) hold.

Handling a growing alphabet Given a set of message types C = Cont(w) or
C = Miss(M) output by a query, Σ is set to Σ ∪ C. If Σ changes during this
assignment, then we say that the alphabet grows. To handle a growing alphabet
we use a modified L* algorithm presented in [13]. In a nutshell, the modified
algorithm updates the observation table to handle the new alphabet symbols
while the general learning cycle is kept similar to the classical L* algorithm.

Initialization and Output The Learner starts with Σ = ∅. The first query
of the Learner is w = ε. Note that the answer to this query is True since an
empty session is valid. Cont(ε) is then added to Σ. The Learner continues to
utilize queries according to the L* algorithm and extends Σ and the learnt DFA
according to the queries’ answers. The algorithm terminates when an equivalence
query returns True. The algorithm outputs the learnt DFA that represents the
protocol’s state machine and Σ that represents the protocol’s message types.

Correctness The correctness of the algorithm is based on the modified defini-
tion of equivalence queries and correctness of the classical L* algorithm.

Theorem 1. The modified Learner terminates with L(M) = L and ΣM = ΣL.

Proof. The Learner terminates when it gets True as an answer from the Teacher
on an equivalence query. In this case, there is no w ∈ Σ∗

M , which is in the
symmetric difference of L and L(M). Thus, L = L(M). Also, there is no w ∈ Σ∗

M ,



PISE: Protocol Inference using Symbolic Execution and Automata Learning 7

such that σ ̸∈ ΣM but w · σ ∈ L. This means that there is no (reachable)
message type σ ∈ ΣL that has not been revealed already by our modified Learner.
Consequently, Σ = ΣL, as required. ⊓⊔

5 Learning a DFA of a Protocol (Approximation)

This section details how the answers to the queries of the modified L* algorithm
presented in Section 4 are approximated. The components of the learning and
their interactions are presented in Figure 1.
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Fig. 1. Illustration of our algorithm

5.1 Characterizing Message Types

Recall that a message type is a pair ⟨D, t⟩ where t is a set of finitely many
messages. We represent a set t using a predicate P describing the format of
that message type. Hence, we represent a message type by a pair ⟨D,P⟩. We
use predicates over variables {B0, . . . , BN−1}, representing the message bytes.
Recall that N is a maximal length of a message (See Section 3). m[i] denotes
the value of the i-th byte of m, such that 0 ≤ m[i] < 256. We define M(D,Px)
to be the set of messages from D that is matched by the predicate Px:

M(D,Px) = {m ∈ D | Px(m) = True}

Given a set of messages x ⊆ D, Px is extracted using the following simple
definition: we hold constraints on message bytes that have the same value for all
the messages in x. Formally, let m ∈ x, we define:

Px =

N−1∧
i=0

φi, φi =

{
Bi = m[i], if ∀m′ ∈ x,m′[i] = m[i]
True, Otherwise

}
∀0 ≤ i ≤ N − 1

Note that the above definition may be replaced with a more elaborate one, if
needed. We choose this definition because it is simple and is sufficiently useful for
many real world protocols. In Section 5.4 we explain how to generate predicates
that are sufficiently general to describe message types even though we are given
only a small subset of examples for that message type.
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5.2 Handling Alphabet Changes

Recall that the exact version of our method is infeasible in our setting. To rem-
edy this, we replace the sets of message types, Cont(w) and Miss(M), with
their approximations, denoted ContA(w) and MissA(M), of message type
candidates.

As we use an approximation to generate the new message type candidates,
they may intersect with previously found message types currently in Σ. This
breaks the assumption that sets of message types are pairwise disjoint. There-
fore, we present here an algorithm that, given C = ContA(w) or C = MissA(M),
incorporates C in Σ while making sure the elements of Σ remain pairwise dis-
joint. We denote by Σ the current alphabet and by Σ′ the updated alphabet
after the changes. The algorithm initializes Σ′ = Σ.

M(D,Pσ)

M(D,P)

M(D,Pσ ∧ ¬P)

M(D,P ∧ ¬Pσ)

M(D,Pσ ∧ P)

Fig. 2. Colliding predicates

Let c = ⟨D,P⟩ ∈ C be a message type
candidate. We say that ⟨D,P⟩ collides with
⟨Dσ,Pσ⟩ ∈ Σ if Dσ = D and M(D,P) ∩
M(D,Pσ) ̸= ∅. In order to detect if c collides
with σ, we check the satisfiability of P ∧ Pσ.
If a collision is detected, then ⟨Dσ ,Pσ⟩ is re-
moved from Σ and three message types are
added to Σ′: One that is based on a predi-
cate of the intersection of the colliding mes-
sage types and two message types that are based on the a symmetric differences
of the colliding message types (see Figure 2). The procedure to handle collisions
of a message type candidate c is presented in Algorithm 1.

Algorithm 1 The procedure to handle message type candidate

1: function handle candidate(⟨D,P⟩ ∈ C, Σ)
2: P ′ ← P, Σ′ ← Σ
3: for all ⟨Dσ,Pσ⟩ ∈ Σ′ such that D = Dσ do
4: if Pσ ∧ P ′ is satisfiable then
5: Σ′ ← Σ′ \ {⟨D,Pσ⟩}
6: if Pσ ∧ ¬P ′ is satisfiable then
7: Σ′ ← Σ′ ∪ {⟨D,Pσ ∧ ¬P ′⟩}
8: end if
9: Σ′ ← Σ′ ∪ {⟨D,Pσ ∧ P ′⟩}
10: P ′ ← P ′ ∧ ¬Pσ

11: end if
12: end for
13: if P ′ is satisfiable then
14: Σ′ ← Σ′ ∪ {⟨D,P ′⟩}
15: end if
16: Σ ← Σ′

17: end function
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Note that, if Σ originally includes only pairwise disjoint message types, then
it is guaranteed that message types ⟨D,Pσ ∧ ¬P⟩ and ⟨D,Pσ ∧ P⟩ do not collide
with any other message types in Σ. Therefore, it is only left to check for collision
with ⟨D,¬Pσ ∧ P⟩ in Σ′.

During the procedure we must discard unsatisfiable predicates. A predi-
cate may become unsatisfiable in two special cases of collision: If M(D,Pσ) ⊂
M(D,P ′) then Pσ ∧ ¬P ′ is not satisfiable and should be discarded (line 6).
If M(D,Pσ) ⊃ M(D,P ′) then P ′ ∧ ¬Pσ is not satisfiable and should not be
inserted to Σ (line 13).

We run Algorithm 1 for every c ∈ C. After running this procedure for all
message type candidates, the elements of the resulting Σ′ are pairwise disjoint
and are set as the new alphabet.

If during the above procedure message types are removed from Σ then the L*
algorithm must be restarted with the updated Σ since the learning was done with
inaccurate alphabet. If message types are only added to Σ (and not removed)
then we say that Σ grows. In the latter case the method from the exact algorithm
(Section 4) is used without having to restart L*.

5.3 Equivalence Oracle

Answering equivalence queries in real world for black box systems is generally
infeasible [2]. Therefore, we define here an oracle to approximate equivalence
queries. We take advantage of a commonly used approach in which an equivalence
query is approximated using a sampling oracle. We use the Wp-Method [11] to
generate a test suite T ⊂ Σ∗

M of queries w. In this method, T is generated using
M and the alphabet ΣM .

The procedure to run a test suite T against a conjectured DFA M is shown
in Appendix A.1. Each w ∈ T is tested using a membership query. If ContA(w)
contains symbols that are not in ΣM , then False is returned with w and
MissA(M) = ContA(w). If w is in the symmetric difference of L and L(M),
then False is returned with w as a counterexample. If missing message types are
not found and a counterexample w is not found in the entire test suite T , True
is returned and the learning terminates. Recall that, if MissA(M) is returned,
then every w · σ, such that σ ∈ MissA(M), is handled as a counterexample.

5.4 Membership Oracle

Let w ∈ Σ∗ be a sequence of message types sent as a membership query. The
algorithm should answer whether w ∈ L and if w ∈ L it should also provide
ContA(w) – a set of message type candidates that may follow w. By definition,
w is a sequence of message types. Recall that such a sequence corresponds to
sessions of the protocol. We answer membership queries using symbolic execution
of the binary code.

A symbolic execution begins with a single active initial state, located at the
binary’s entry point. By stepping forward active states iteratively, a set of new
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active states is generated, representing multiple different execution paths of the
binary. We divide the symbolic execution into two phases: monitoring phase,
which answers whether w is a valid session of the protocol, and the probing
phase, which results in possible continuations of w. The latter phase is executed
only if w is a valid session. During the monitoring phase we guide the symbolic
execution to consider only execution paths that follow the given sequence w.
During the probing phase, however, we take into account all feasible executions
that are developed as continuations to the executions that we found during the
monitoring phase.

se

Send ⟨D,P⟩ ∈ ContA(w)

Recv

Send ⟨D,P⟩ ∈ ContA(w)

Send ⟨D,P⟩ ∈ ContA(w)

Monitoring Phase Probing Phase

i = 1 2 . . . n− 1 i = n

Fig. 3. Illustration of symbolic execution during membership query

Monitoring phase Let w = ⟨Dσ1 ,Pσ1⟩ . . . ⟨Dσn ,Pσn⟩ be the queried sequence.
We hook the functions in the binary that send and receive messages1. The pro-
cedures inserted in the hooks are presented in the following subsections. We
perform the monitoring phase in n stages: We start with a single initial state
se located at the binary code’s entry point. For each stage 1 ≤ i ≤ n we add
constraints of the predicate of the message type ⟨Dσi ,Pσi⟩. These constraints
restrict the symbolic execution to execution paths that send or receive a mes-
sage of type ⟨Dσi

,Pσi
⟩ at the current stage. We then resume the execution of

all active states, until all active states are restricted to the i-th message type.
In the next subsections we explain in detail how we eliminate execution paths
that do not match w. Recall that states with unsatisfiable constraints as well as
abort states, are discarded automatically.

If we successfully finish the execution of the last stage (for i = n) with at
least one active state, then there is at least one valid session of the binary code
that matches the sequence of message types of w. In such a case the answer
to the query is True. If, however, during one of the stages there are no active
states left, then w represents invalid session for the binary code, and therefore
the oracle returns False as the query’s result.

1 Such functions can be trivially identified by finding the system calls that send or
receive messages.
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In Figure 3, the monitoring phase is illustrated in the left part of the figure.
States that represent infeasible executions (infeasible constraints) are discarded
(gray). States that represent feasible executions that do not match the query
w are discarded as well (red). The stages of the monitoring are illustrated as
well. The figure represents a membership query that is answered with True, as
a single active state (magenta) is found at the end of the monitoring phase.

Monitoring incoming messages The receive function is hooked during the mon-
itoring phase with the following procedure. The purpose of this procedure is to
advance the monitoring of the queried sequence when the binary code receives
a message. Let s be a symbolic state during the i-th stage in which the binary
code calls the receive function, and let σi = ⟨Dσi

,Pσi
⟩ be the next expected

alphabet symbol in the query.
If σi represents outcoming messages (i.e Dσi

= S), then s is not an execution
path that can match the queried sequence w: the execution path represented by
s receives a message in the i-th stage whereas the query w represents sessions
that send a message from M(S,Pσi

) in the i-th stage. Therefore we discard s.
On the other hand, if σi represents incoming message type (i.e Dσi

= R), we
move s to the i+1-th stage with s′ as its successor. We attach to s′ an assumption
that a message from M(R,Pσi

) is read from the network. We implement this
assumption by inserting the predicate Pσi(msg) to the constraints of s′, where
msg is the received message buffer.

Once s′ resumes execution, it will continue as if the received message satisfies
Pσi

and thus ”forcing” descendant states to follow only execution paths that
represent the reception of messages from M(R,Pσi) during the i-th stage.

Monitoring outcoming messages The procedure to hook a send function is similar
to the one used above for incoming messages. The purpose of the procedure is
to perform the monitoring of the queried sequence when the binary code sends
a message. Let s be a symbolic state in which the binary code calls the send
function, and let σi = ⟨Dσi ,Pσi⟩ be the next expected alphabet in the query.

In case σi represents incoming messages (i.e Dσi
= R), it means that the

execution path of s does not match the sequence query w and we discard s.
On the other hand, if σi represents an outcoming message type (i.e Dσi = S),
we move s to the i + 1-th stage with s′ as its successor. We attach to s′ an
assertion that a message from M(S,Pσi

) is sent to the network. We implement
this assertion by inserting the predicate Pσi

(msg) to the constraints of s′, where
msg is the sent message buffer.

Probing phase The purpose of the probing phase is to generate ContA(w) for
w for which the monitoring phase returned True. As above, we hook the send
and receive functions of the binary code but insert different procedures. We
describe them in the upcoming subsections. The aim of the probing procedure is
to uncover all symbolic states that represent execution paths in which a message
is sent or received following w. For each such state s the constraints on the
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message buffer received or sent, denoted as msgs, are collected. We assume that
all concrete values for msgs in the context of state s belong to the same message
type and we generate a message type candidate to represent it.

In Figure 3, the probing phase is shown in the right part of the figure. Since
the purpose of the probing phase is to discover all message type candidates
that can follow the sequence w, we continue the execution from active states
matching the query w at the end of the monitoring phase (magenta). A message
type candidate c is generated from every state s (green), and added to ContA(w).
We demonstrate the probing of message type candidates in Appendix A.2.

Probing outcoming messages The hooking procedure used in the send function
is straightforward. Here msgs is the sent message’s symbolic buffer. We assume
that the symbolic buffer has enough constraints under the current state s that
sufficiently represent the sent message type. Therefore, no further symbolic exe-
cution is needed and the symbolic state s is passed to the procedure to generate
a message type candidate.

Probing incoming messages Let s be a state in which the binary code calls a
receive function during the probing phase. Let msg be the symbolic received
message. Upon calling receive, the content of msg is an unconstrained symbolic
value as it is received as an input by the binary code. Hence, one cannot extract
information on the format of the message type that is expected to be received
in state s. To solve this, we present the following novel approach to uncover
information regarding the expected received message type: we clone s to s′ with
msgs′ = msg and resume symbolic execution of s′. During this execution we
assume that the binary code will parse the received message, hence constraints
will be developed on msgs′ that will reveal the format expected by the binary
code. We choose to resume the execution until the binary code sends or receives
another message, or until the code terminates. We assume that until that point
the code completes parsing the received message and acts upon its content,
hence sufficient constraints are accumulated on the message buffer to identify the
expected message type to be received. During these instructions s′ is developed
into possibly multiple descendant states. These states are then passed to the
procedure to generate a message type candidate.

Generating message type candidates Let s be a state that successfully probed
either sent or received message – msgs. The purpose of the procedure described
here is to generate a message type candidate from s. Note that concrete values
satisfying the constraints of s on msgs represent valid messages in the protocol.
We assume that these messages are part of the same message type. We ask
the symbolic execution engine to solve msgs and generate NUM SOL2 possible
concrete values for msgs.

Let x be the set of generated concrete messages. We extract Px as described
in Section 5.1. Then, we iteratively refine Px by trying to find concrete values

2 In our implementation NUM SOL = 10
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m′ of msgs, that contradict Px in a sense that ¬Px(m
′) is True. Such m′ are

concrete values that can appear in msgs in a real execution (since they were
solution to the msgs). Nevertheless, they are not represented by Px. In case we
find such m′, we add them to x and regenerate Px. We repeat this process until
the solver is unable to find additional m′ that contradict Px. This procedure
allows us to find Px that represents all messages that belong to the assumed
message type, based only on a small subset of such messages.

6 Optimizations

We develop several optimizations to reduce the running time of the method and
allow it to scale to real-world protocol implementations. These optimizations take
advantage of the characteristics of network protocols and the algorithm itself.
Since symbolic execution is the most time consuming part of the algorithm,
the developed optimizations focus on reducing the number of needed symbolic
executions, as well as reducing the running time of symbolic executions.

Prefix Closed Property This optimization leverages the fact that the pro-
tocol’s regular language L is a prefix-closed set (See Section 3). It is based on
a similar technique, employed in [13]. The optimization allows to answer some
membership queries immediately by the Learner without having to resort to
symbolic execution. Every membership query w that was answered with False
is stored by the membership oracle in a cache. For every membership query w
sent to the oracle, it is first checked whether there exists x, y ∈ Σ∗ such that
xy = w and x is in the cache. In such a case, the query immediately returns
False. In other words, if a prefix of w is not in L, then by definition of prefix-
closed set it must hold that w /∈ L. Thus, we avoid unnecessary applications of
symbolic execution.

When, during the discovery of new message types, an alphabet symbol is
removed and L* is restarted, all queries w in the cache that contain a removed
symbol are removed from the cache. These queries are invalid with the new
alphabet and cannot be a prefix of a query over the new alphabet.

Fast Equivalence Queries Let w ∈ Σ∗ be a query for which the member-
ship oracle answered True, and let ContA(w) be the returned set of alphabet
candidates. We store w and its associated ContA(w) in a cache called continua-
tions cache. The equivalence oracle answers an equivalence query for DFA M by
utilizing this cache. The oracle checks consistency of M with the continuations
cache: for every w in the cache and for every σ ∈ ContA(w), it checks whether M
accepts w ·σ. If M rejects w ·σ, the equivalence oracle returns False and returns
w ·σ as a counterexample. Thus it alleviates the need to run symbolic execution
to answer the query. Note that, the cache stores alphabet symbols after resolving
collisions, and not message type candidates. This is necessary so that the cache
can return counterexamples over the current alphabet. When alphabet symbol
is removed, all cache entries containing the removed symbol are erased.
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The correctness of this optimization follows from the definition of ContA(w).
According to the definition, every state machineM that claims L(M) = L should
satisfy w · σ ∈ L(M).

Execution Cache This optimization uses symbolic states s resulting at the
end of the monitoring phase for w as initial states for query wx for any x ∈ Σ∗.
All queries w for which the teacher returns True are stored in a cache called
”Execution Cache” with all active symbolic states resulting at the end of the
monitoring phase for w. Then, whenever a query w′ is sent, the teacher finds
decomposition w′ = p.s, p = p1 . . . pk such that p is the longest word in the
cache. Then, the monitoring phase for w′ begins with the states saved for p, in
the i = k + 1 stage of the monitoring. We skip the first k stages because the
states saved for p contains exactly all execution paths for sessions p1 . . . pk. The
rest of the query remains the same as described in Section 5.4. We note that,
when alphabet symbols are removed, all entries in the cache that include the
removed symbol should also be removed.

7 Implementation, Results and Evaluation

In this section we present the details of our implementation of the presented
method and explore its performance. We evaluated our method against various
protocol implementations (including SMTP and other non-standard protocols),
however due to space constraints we present here only an evaluation against
Gh0st RAT’s C&C protocol.

7.1 Implementation

The algorithm was implemented3 as two independent modules for the Learner
and the Teacher. The Learner is implemented as a Java program that commu-
nicates with the Teacher using local socket. The Teacher is implemented as a
Python program that serves the Learner’s queries. We base our implementation
on two open source tools: (1) LearnLib [13] – implements the L* algorithm and
its variations (for example, [14]); (2) angr [15] – a library that provides static
analysis and symbolic execution engine for binary codes.

Learning Client (Learner) The Learner begins by initializing a learning pro-
cess with LearnLib’s implementation of L*. Membership queries are first checked
with the prefix-closed cache (See Section 6). In case of a miss, the query is sent
to the Teacher. If the Teacher answers that w ∈ L, then ContA(w) is analyzed
for new message types which are added to Σ. Intersections between message
types are handled as described in Section 5.2.

Conjecture DFA is first checked against the continuations cache as described
in Section 6. If the conjectured DFA is found to accept all continuations in the

3 https://github.com/ron4548/{InferenceClient,InferenceServer}
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cache, an equivalence query approximation is triggered. A test suite is generated
using the Wp-Method [11] and is tested as explained in Section 5.3. Missing mes-
sage type are handled as described in Section 5.2. Counterexamples are handled
by the internal implementation of L*.

We use the following features of LearnLib: Classical L* implementation; Sup-
port for growing alphabet in L*; Test suite generation with Wp-Method; Prefix-
closed cache (See Section 6). On the other hand, we implemented the following
modifications: (1) Alphabet symbols as tuples ⟨D,P⟩; (2) Handling of alphabet
changes and collisions (Section 5.2); (3) Continuations cache to support Fast
equivalence queries. (Section 6); (4) Running tests suites to approximate modi-
fied equivalence queries (Section 5.3).

Symbolic Execution Server (Teacher) Our Teacher runs symbolic execution
using angr, and is the only component that interacts with the binary code. The
Teacher initializes symbolic execution for the binary code and setups the hooking
of the send/receive functions the user provides. The Teacher receives membership
queries in a loop, until the Learner finishes the learning. When a membership
query is received, we first check the execution cache optimization (See Section 6),
in case of a miss the monitoring phase executes as described in Section 5.4. If
the query results with True, the probing phase runs and generates message type
candidates. These candidates are collected and sent back to the Learner.

7.2 Gh0st RAT

Gh0st RAT is a well known malware4. Once an instance of Gh0st RAT is run
on the victim’s computer, the attacker has full control over the system. This
includes access to the screen, microphone and camera. The attacker controls the
malware using a C&C protocol. The source code of some variants of Gh0st is
available on the web. We chose to work with one of them5. In this variant, the
RAT runs in a multi-threaded process which connects to the attacker’s server.
When a command is received, a new thread and a new connection are created
to handle the command and its further communications.

Initially, we applied our method on this variant. However, angr [15] is not
well-suited for multi-threaded programs. In addition, angr does not fully support
Windows API. This lead to difficulties with applying our method on the Gh0st
RAT binary directly. To validate that the proposed method can infer a state
machine as complex as that of Gh0st RAT, we opted for a different approach. We
re-implemented most of the malware’s C&C protocol with a simpler architecture
that does not involve threads. We applied our method on this program.

We provided our method with two functions that the program uses in order
to send and receive messages from the network: get message and send message.
Both get a message buffer and its length. The full state machine is complex and
contains 27 states and 52 transitions (without rejecting states). We show the full
state machine and the discovered alphabet symbols in Appendix A.3.

4 https://attack.mitre.org/software/S0032/
5 https://github.com/yuanyuanxiang/SimpleRemoter
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In Figure 4 we show a branch of the state machine, that handles a com-
mand to stream the camera of the victim. In this branch, the attacker sends
a command to open the camera stream ([R] WEBCAM). Then, the client sends
information regarding the stream ([S] BMPINFO) and waits to receive from the
attacker a command to begin streaming ([R] NEXT). From now on, the client
sends periodically a bitmap of the webcam to the attacker’s server ([S] BMP).
By default, this bitmap is not compressed. The attacker can enable compres-
sion of the stream ([R] COMPR ON) and disable it ([R] COMPR OFF). When the
compression is on, the bitmap is sent compressed (COMPR BMP).

q0

start

q1 q2 q3 q4

[R] WEBCAM [S] BMPINFO
[R] NEXT

[R] COMPR OFF

[S] BMP

[R] COMPR ON

[S] COMPR BMP

[R] COMPR ON

[R] COMPR OFF

Fig. 4. The branch in Gh0st RAT C&C protocol that handles webcam streaming. The
letter in the square brackets indicates whether the message is sent or received.

Statistics of the learning process are shown in Table 1. 45 message types were
discovered. The learner issued about 45,000 membership queries; more than 78%
of them were answered by the prefix-closed cache. Only a single equivalence query
was issued. This shows the dramatic effectiveness of the continuations cache to
reduce the number of costly equivalence queries. There are no discrepancies
between the learnt DFA and the protocol’s state machine.

Learning time: 142 seconds

Total Membership queries: 45488

Total Equivalence queries: 1

Prefix-Closed cache miss rate: 0.2184

Alphabet size: 45

Table 1. Gh0st RAT learning statistics

8 Conclusions

In this work we present a novel method for inferring the state machine of a
protocol implemented by a binary with no a-priori knowledge of the protocol.
Our method is based on extended symbolic execution and modified automata
learning. The method assumes access to only the implementation of a single peer
of the protocol.

We implemented and validated our method on several protocols implemen-
tations. As demonstrated by the Gh0st RAT use case, the method can infer
complex protocols with dozens of message types. Nonetheless, this use case also
highlighted that the method will preform as a good as the symbolic execution
engine it relies on.
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A Appendix

A.1 Algorithm to approximate equivalence query using a test suite

Algorithm 2 The procedure to approximate equivalence queries

1: function run test suite(M , T ⊂ Σ∗
M )

2: for all w ∈ T do
3: ⟨w ∈ L,ContA(w)⟩ ← membership(w)
4: if w ∈ L then
5: if ContA(w) \ΣM ̸= ∅ then
6: return ⟨False, w,ContA(w)⟩
7: end if
8: if w /∈ L(M) then
9: return ⟨False, w⟩
10: end if
11: else if w ∈ L(M) then
12: return ⟨False, w⟩
13: end if
14: end for
15: return True
16: end function

A.2 Example of probing message type candidates

To illustrate how a conditional branch reveals information on a symbolic value,
consider the pseudo-code in Listing 1.1 of a binary code:

Listing 1.1. Pseudo-code to demonstrate the probing phase

1 : Send ( Connect ) ;
2 : msg = Receive ( ) ;
3 : i f (msg == ”HelloV1” ) {
4 : Send ( ” InitV1 ” ) ;
5 : . . .
6 : } else i f (msg == ”HelloV2” ) {
7 : Send ( ” InitV2 ” ) ;
8 : . . .
9 : } else {
10 : abort ( ) ;
11 : }

Assume a query w = ⟨S,P⟩ where P = (B0B1B2B3B4B5B6 = ”Connect”).
The monitoring phase for this query and this binary code is done with a single
satisfiable state in line 2. The probing phase resumes this state. In line 2 the
binary code receives msg in a state s. msg refers to a symbolic value with no
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constraints, as it is an input from the network. A state s′ = s is resumed with
msgs′ = msg. The execution splits according to the conditional branches: a state
s̃1 represents execution at line 4 with a constraint that msg = ”HelloV1”, a state
s̃2 represents execution at line 7 with a constraint that msg = ”HelloV2” and a
state s3 represents execution at line 10 which aborts and is discarded. Both s̃1
and s̃2 represent a call to send, which triggers the generation of message type
candidate from msgs̃1 = msgs̃2 = msg. In the context of s̃1, the analysis is
tied to the constraint msg = ”HelloV1” and generates a message type candidate
⟨R,P1⟩ where:

P1 = (B0B1B2B3B4B5B6 = ”HelloV1”)

In the context of s̃2 the analysis is tied to the constraint msg = ”HelloV2” and
generates an alphabet symbol ⟨R,P2⟩ where:

P2 = (B0B1B2B3B4B5B6 = ”HelloV2”)

The set ContA(w) = {⟨R,P1⟩, ⟨R,P2⟩} is returned with the answer that w ∈ L.

A.3 Gh0st RAT Inference Results

The full state machine learnt by applying our method on Gh0st RAT C&C is
presented in Figure 5. In the protocol a message type is determined by the first
byte of the message and some message types provide additional information in
the second byte. In Table 2 we present the predicate of the type as the prefix
common to all the messages in that type.
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[R:7]

4

[R:4]

5

[R:6]

6

[R:3]
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[R:10]
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[R:9][R:36]
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20

[S:17]

[S:18] 22
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[R:30] [R:29] [R:32] [R:31] [R:33]
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[S:67]
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Fig. 5. Full state machine learnt by our method
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MSG ID Name Prefix MSG ID Name Prefix

[R:0] SERVER EXIT 0xcd [R:1] CMD BYE 0xcc

[R:2] CMD TALK 0x34 [R:3] CMD REGEDIT 0x33

[R:4] CMD AUDIO 0x22 [R:5] CMD SHELL 0x28

[R:6] CMD SERVICES 0x32 [R:7] CMD SCREEN SPY 0x10

[R:8] CMD CAM 0x1a [R:145] CMD SCREEN BLOCK INPUT 0x15

[R:10] CMD SYSTEM 0x23 [S:277] TOKEN CLIPBOARD TEXT 0x76

[S:12] TOKEN BITMAPINFO 0x73 [S:13] TOKEN AUDIO START 0x79

[S:14] TOKEN SERVERLIST 0x81 [R:140] CMD SCREEN SET CLIPBOARD 0x19

[S:16] TOKEN WSLIST 0x7e [S:17] TOKEN TALK START 0x84

[S:19] TOKEN SHELL START 0x80 [S:20] TOKEN CAM BITMAPINFO 0x77

[S:21] CMD BYE 0xcc [R:32] CMD SVCCFG/START 0x83 0x01

[R:24] CMD NEXT 0x1e [R:30] CMD SVCCFG/DEMAND START 0x83 0x04

[R:29] CMD SERVICELIST 0x82 [R:31] CMD SVCCFG/AUTO 0x83 0x03

[S:22] SERVER EXIT 0xcd [R:33] CMD SVCCFG/STOP 0x83 0x02

[R:34] CMD REG FIND 0xc9 [R:36] CMD WINDOW CLOSE 0x00

[R:37] CMD PSLIST 0x24 [S:67] TOKEN FIRSTSCREEN 0x74

[S:68] TOKEN AUDIO DATA 0x7a [S:74] TOKEN CAM DIB 0x78 0x00

[S:73] TOKEN TALKCMPLT 0x85 [R:75] CMD CAM ENABLECOMPRESS 0x1b

[S:112] TOKEN PSLIST 0x7d [R:76] CMD CAM DISABLECOMPRESS 0x1c

[S:137] TOKEN NEXTSCREEN 0x75 [R:138] CMD SCREEN GET CLIPBOARD 0x18

[S:15] TOKEN REGEDIT 0xc8 [R:144] CMD SCREEN CONTROL 0x14

[R:9] CMD WSLIST 0x25 [S:199] TOKEN CAM DIB/COMPRESS 0x78 0x01

[R:11] CMD LIST DRIVE 0x01

Table 2. Learnt message types
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Grosen, J., Feng, S., Hauser, C., Krügel, C., Vigna, G.: SOK: (state of) the art
of war: Offensive techniques in binary analysis. In: IEEE Symposium on Security
and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016. pp. 138–157. IEEE
Computer Society (2016)
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