
#BHUSA @BlackHatEvents

A New Trend for the Blue Team
Using a Practical Symbolic Engine to Detect Evasive Forms of

Malware/Ransomware
Hank ChenSheng-Hao Ma Mars Cheng

@hank0438@aaaddress1 @marscheng_

TXOne Networks Inc.

#BHUSA @BlackHatEvents

Who are we?

Hank ChenSheng-Hao Ma Mars Cheng
Manager

PSIRT and Threat Research
Threat Researcher

PSIRT and Threat Research
Threat Researcher

PSIRT and Threat Research
• Spoke at Black Hat, RSA Conference, DEFCON,

SecTor, FIRST, HITB, ICS Cyber Security
Conference, HITCON, SINCON, CYBERSEC, and
CLOUDSEC

• Instructor of CCoE Taiwan, Ministry of National
Defense, Ministry of Education, Ministry of
Economic Affairs and etc.

• General Coordinator of HITCON 2022 and 2021
• Vice General Coordinator of HITCON 2020

• Spoke at Black Hat, DEFCON, HITB, VXCON,
HITCON, ROOTCON, and CYBERSEC

• Instructor of CCoE Taiwan, Ministry of National
Defense, Ministry of Education, and etc.

• The author of the popular security book "Windows
APT Warfare: The Definitive Guide for Malware
Researchers"

• Spoke at FIRST Conference in 2022
• Instructor of Ministry of National Defense
• Teaching assistant of Cryptography and Information

Security Course in Taiwan NTHU and CCoE
Taiwan

• Member of CTF team 10sec and ⚔TSJ⚔

#BHUSA @BlackHatEvents

Outline
• Introduction

• Threat Overview

• The Difficult Problem of Static/Dynamic Malware Detection and Classification

• Deep Dive into Our Practical Symbolic Engine
• Related Work

• Our Practical Symbolic Engine

• Demonstration
• CRC32 & DLL ReflectiveLoader

• Process Hollowing

• Ransomware Detection

• Future Works and Closing Remarks

#BHUSA @BlackHatEvents

Outline
• Introduction

• Threat Overview

• The Difficult Problem of Static/Dynamic Malware Detection and Classification

• Deep Dive into Our Practical Symbolic Engine
• Related Work

• Our Practical Symbolic Engine

• Demonstration
• CRC32 & DLL ReflectiveLoader

• Process Hollowing

• Ransomware Detection

• Future Works and Closing Remarks

#BHUSA @BlackHatEvents

Threat Overview

Malware Type

Virus AdwareRootkit

Fileless Malware Stealth Malware

Malvertising Ransomware Spyware

Trojan

Worms Dropper ShellCode

#BHUSA @BlackHatEvents

Threat Overview
• Recent Attack Trends – Many Ransomware Family

Ransomware Family 2021 Q2 2021 Q3 2021 Q4 2022 Q1
From 2021
Q4 to 2022

Q1
WannaCry 62.38% 46.95% 46.73% 42.23%

Cryptor 4.06% 17.72% 15.91% 13.79%

Locker 10.44% 10.92% 10.57% 13.43%

LockBit 2.10% 4.35% 5.32% 5.89%

Conti 3.49% 3.09% 3.98% 4.34%

Gandcrab 5.03% 5.21% 3.93% 4.19%

Locky 5.59% 3.28% 3.32% 3.69%

Cobra 2.61% 2.83% 2.73% 3.33%

Hive 0.59% 0.79% 1.82% 2.56%

MAZE 1.00% 1.27% 1.69% 2.07%

#BHUSA @BlackHatEvents

The Ransomware Matrix
WannaCry Ryuk Lockergoga EKANS RagnarLocker ColdLock Egregor Conti v2

Language Check No No No No Yes No Yes No
Kill Process/Services Yes Yes Yes Yes Yes Yes Yes No

Persistence Yes Yes No No No No No Yes
Privilege Escalation Yes Yes No No Yes No No No
Lateral Movement Yes No No No No No No No

Anti-Recovery Yes Yes Yes Yes Yes No Yes Yes
Atomic-Check Yes Yes Yes Yes Yes Yes Yes Yes
File Encryption R-M-W R-W-M M-R-W R-W-M R-W-M R-W-M R-W-M R-W-M

Partial Encryption No Yes No No No Yes Yes Yes

Cipher Suite AES-128-CBC
RSA-2048

AES-256
RSA-2048

AES-128-CTR
RSA-1024

AES-256-CTR
RSA-2048

Salsa20
RSA-2048

AES-256-CBC
RSA

ChaCha8
RSA-2048

ChaCha8
RSA-4096

Configuration File Yes No No Yes Yes No Yes No
Command-Line Arguments Yes No Yes No Yes No Yes Yes

Claim: The matrix is only based on the samples we had analyzed. They might add more features in their variants.

File Encryption:
SF: SetFileInformationByHandle/NtSetInformationFile;
R: ReadFile ; W: WriteFile ; M: MoveFile;
MP: MapViewOfFile, FF: FlushViewOfFile≈ç

#BHUSA @BlackHatEvents

Bad Rabbit Mount Locker RansomExx DoppelPaymer Darkside Babuk REvil LockBit 2.0
Language Check No No No No Yes No Yes Yes

Kill Process/Services No Yes Yes Yes Yes Yes Yes Yes
Persistence Yes No No Yes No No Yes Yes

Privilege Escalation Yes No No Yes No No Yes Yes
Lateral Movement Yes Yes No No No No No Yes

Anti-Recovery No No Yes Yes Yes Yes Yes Yes
Atomic-Check Yes Yes Yes Yes Yes Yes Yes Yes
File Encryption MP-FF R-W-SF R-W-M R-W-M M-R-W M-R-W R-W-M R-W-SF

Partial Encryption Yes Yes No No Yes Yes Yes Yes

Cipher Suite AES-128-CBC
RSA-2048

ChaCha20
RSA-2048

AES-256-ECB
RSA-4096

AES-256-CBC
RSA-2048

Salsa20
RSA-1024

HC256
Curve25519-ECDH

Salsa20
Curve25519-

ECDH

AES-128-CBC
Curve25519-ECDH

Configuration File No No No No Yes No Yes No
Command-Line Arguments Yes Yes No No Yes Yes Yes Yes

The Ransomware Matrix

Claim: The matrix is only based on the samples we had analyzed. They might add more features in their variants. File Encryption:
SF: SetFileInformationByHandle/NtSetInformationFile;
R: ReadFile ; W: WriteFile ; M: MoveFile;
MP: MapViewOfFile, FF: FlushViewOfFile≈ç

#BHUSA @BlackHatEvents

Malware detection Techniques

Type Scope

Signature-based Byte sequence, List of DLL, Assembly Instruction

Behavior-based API Calls, System calls, CFG, Instruction trace, n-gram, Sandbox

Heuristic-based API Calls, System call, CFG, Instruction trace, List of DLL, Hybrid featues, n-gram

Cloud-based Strings, System calls, Hybrid featues, n-gram

Learning-based API Calls, System call, Hybrid featues

…

#BHUSA @BlackHatEvents

The Difficult Problem on Malware Detection

Type Difficult Problem (Limitation)

Signature-based Need huge database, Hard to defeat obfuscated samples, Vendor need to spend
many people to update the signature

Behavior-based Need to Run it, have the risk of attacking by 0-day exploits or vulnerabilities. Time-
consuming and labor-intensive. Behavior policy can be bypassed

Heuristic-based will include both of the above

Cloud-based Immediacy of Internet connections. Adds additional delay to many tasks. Less
effective at monitoring/detecting Heuristics

Learning-based Learning dataset can’t help to identify the variant

…

#BHUSA @BlackHatEvents

The Difficult Problem on Malware Detection
• Time-consuming and labor-intensive when dynamic analysis

• Vendor need to update the signature based on different malware

• Can’t help to identify the variant

• Hard to defeat obfuscated samples

#BHUSA @BlackHatEvents

Outline
• Introduction

• Threat Overview

• The Difficult Problem of Static/Dynamic Malware Detection and Classification

• Deep Dive into Our Practical Symbolic Engine
• Related Work

• Our Practical Symbolic Engine

• Demonstration
• CRC32 & DLL ReflectiveLoader

• Process Hollowing

• Ransomware Detection

• Future Works and Closing Remarks

#BHUSA @BlackHatEvents

Related Work
• Three main papers inspire us do this research

• Christodorescu, Mihai, et al. "Semantics-aware malware detection." 2005 IEEE symposium on security
and privacy (S&P'05). IEEE, 2005.

• Kotov, Vadim, and Michael Wojnowicz. "Towards generic deobfuscation of windows API calls." arXiv
preprint arXiv:1802.04466 (2018).

• Ding, Steven HH, Benjamin CM Fung, and Philippe Charland. "Asm2vec: Boosting static representation
robustness for binary clone search against code obfuscation and compiler optimization." 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 2019.

• Thanks for their contributions

#BHUSA @BlackHatEvents

Related Work
• Semantics-Aware Malware Detection (S&P'05)

• A lightweight malware template based on data reference
relationships

• Efficient detection the same behavior but easily mutated code
• No False Positive!
• Nowadays: Practical Issues

• The original paper only proposed the concept without releasing the
engine and source code for use

• Developing a complete symbolic engine to analyze real-world samples
is difficult.

• The Windows API recognition of strip symbols could not be resolved

Semantics-Aware Malware Detection

Mihai Christodorescu∗ Somesh Jha∗
University of Wisconsin, Madison

{mihai, jha}@cs.wisc.edu

Sanjit A. Seshia† Dawn Song Randal E. Bryant†
Carnegie Mellon University

{sanjit@cs., dawnsong@, bryant@cs.}cmu.edu

Abstract

A malware detector is a system that attempts to de-
termine whether a program has malicious intent. In or-
der to evade detection, malware writers (hackers) fre-
quently use obfuscation to morph malware. Malware
detectors that use a pattern-matching approach (such
as commercial virus scanners) are susceptible to obfus-
cations used by hackers. The fundamental deficiency
in the pattern-matching approach to malware detection
is that it is purely syntactic and ignores the semantics
of instructions. In this paper, we present a malware-
detection algorithm that addresses this deficiency by in-
corporating instruction semantics to detect malicious
program traits. Experimental evaluation demonstrates
that our malware-detection algorithm can detect vari-
ants of malware with a relatively low run-time over-
head. Moreover, our semantics-aware malware detec-
tion algorithm is resilient to common obfuscations used
by hackers.

1. Introduction

A malware instance is a program that has malicious
intent. Examples of such programs include viruses,
trojans, and worms. A classification of malware with
respect to its propagation method and goal is given
in [29]. A malware detector is a system that attempts
to identify malware. A virus scanner uses signatures
and other heuristics to identify malware, and thus is an
example of a malware detector. Given the havoc that
can be caused by malware [18], malware detection is an
important goal.

∗This work was supported in part by the Office of Naval Research
under contracts N00014-01-1-0796 and N00014-01-1-0708. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes, notwithstanding any copyright notices af-
fixed thereon.

The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the above
government agencies or the U.S. Government.

†This work was supported in part by Army Research Office grant
DAAD19-01-1-0485.

The goal of a malware writer (hacker) is to modify
or morph their malware to evade detection by a mal-
ware detector. A common technique used by malware
writers to evade detection is program obfuscation [30].
Polymorphism and metamorphism are two common ob-
fuscation techniques used by malware writers. For ex-
ample, in order to evade detection, a virus can morph
itself by encrypting its malicious payload and decrypt-
ing it during execution. A polymorphic virus obfus-
cates its decryption loop using several transformations,
such as nop-insertion, code transposition (changing the
order of instructions and placing jump instructions to
maintain the original semantics), and register reassign-
ment (permuting the register allocation). Metamor-
phic viruses attempt to evade detection by obfuscat-
ing the entire virus. When they replicate, these viruses
change their code in a variety of ways, such as code
transposition, substitution of equivalent instruction se-
quences, change of conditional jumps, and register re-
assignment [28, 35, 36].

Addition of new behaviors to existing malware is an-
other favorite technique used by malware writers. For
example, the Sobig.A through Sobig.F worm variants
(widespread during the summer of 2003) were devel-
oped iteratively, with each successive iteration adding
or changing small features [25–27]. Each new vari-
ant managed to evade detection either through the use
of obfuscations or by adding more behavior. The re-
cent recurrence of the Netsky and B[e]agle worms (both
active in the first half of 2004) is also an example of
how adding new code or changing existing code creates
new undetectable and more malicious variants [9, 17].
For example, the B[e]agle worm shows a series of “up-
grades” from version A to version C that include the
addition of a backdoor, code to disable local security
mechanisms, and functionality to better hide the worm
within existing processes. A quote from [17] summa-
rizes the challenges worm families pose to detectors:

Arguably the most striking aspect of Beagle
is the dedication of the author or authors to
refining the code. New pieces are tested, per-
fected, and then deployed with great fore-
thought as to how to evade antivirus scanners
and how to defeat network edge protection

Proceedings of the 2005 IEEE Symposium on Security and Privacy (S&P’05)
1081-6011/05 $ 20.00 IEEE

#BHUSA @BlackHatEvents

Towards Generic Deobfuscation
of Windows API Calls

Vadim Kotov
Dept. of Research and Intelligence

Cylance, Inc
vkotov@cylance.com

Michael Wojnowicz
Dept. of Research and Intelligence

Cylance, Inc
mwojnowicz@cylance.com

Abstract—A common way to get insight into a malicious
program’s functionality is to look at which API functions it
calls. To complicate the reverse engineering of their programs,
malware authors deploy API obfuscation techniques, hiding them
from analysts’ eyes and anti-malware scanners. This problem
can be partially addressed by using dynamic analysis; that is,
by executing a malware sample in a controlled environment and
logging the API calls. However, malware that is aware of virtual
machines and sandboxes might terminate without showing any
signs of malicious behavior. In this paper, we introduce a static
analysis technique allowing generic deobfuscation of Windows
API calls. The technique utilizes symbolic execution and hidden
Markov models to predict API names from the arguments passed
to the API functions. Our best prediction model can correctly
identify API names with 87.60% accuracy.

I. INTRODUCTION

Malware plays by the same rules as legitimate software,
so in order to do something meaningful (read files, update
the registry, connect to a remote server, etc.) it must interact
with the operating system via the Application Programming
Interface (API). On Windows machines, the API functions
reside in dynamic link libraries (DLL). Windows executables
[1] store the addresses of the API functions they depend on
in the Import Address Table (IAT) - an array of pointers to
the functions in their corresponding DLLs. Normally these
addresses are resolved by the loader upon program execution.

When analyzing malware, it is crucial to know what API
functions it calls - this provides good insight into its capabili-
ties [2], [3]. That is why malware developers try to complicate
the analysis by obfuscating the API calls [4]. When API
calls are obfuscated, the IAT is either empty or populated
by pointers to functions unrelated to malware’s objectives,
while the true API functions are resolved on-the-fly. This is
usually done by locating a DLL in the memory and looking
up the target function in its Export Table - a data structure that

describes API functions exposed by the DLL. In other words,
obfuscated API calls assume some ad-hoc API resolution
procedure, different from the Windows loader.

Deobfuscating API calls can be tackled in two broad ways:
1) Using static analysis, which requires reverse engineering

the obfuscation scheme and writing a script that puts
back missing API names.

2) Using dynamic analysis, which assumes executing mal-
ware in the controlled environment and logging the API
calls.

Static analysis allows exploration of every possible execu-
tion branch in a program and fully understand its functionality.
Its major drawback is that it can get time consuming as
some malware families deploy lengthy and convoluted obfus-
cation routines (e.g. Dridex banking Trojan [5]). Furthermore,
even minor changes to the obfuscation schemes break the
deobfuscation scripts, forcing analysts to spend time adapting
them or re-writing them altogether. Dynamic analysis, on
the other hand, is agnostic of obfuscation, but it can only
explore one control flow path, making the analysis incomplete.
Additionally, since dynamic analysis is usually performed
inside virtual machines (VM) and sandboxes, a VM-/sandbox-
aware malware can potentially thwart it.

In this paper, we introduce a static analysis approach,
allowing generic deobfuscation of Windows API calls. Our
approach is based on an observation that malware analysts
can often “guess” some API functions by just looking at
their arguments and the context in which they are called. For
example, consider RegCreateKeyEx:

LONG WINAPI RegCreateKeyEx(
1. HKEY hKey,
2. LPCTSTR lpSubKey,
3. DWORD Reserved,
4. LPTSTR lpClass,
5. DWORD dwOptions,
6. REGSAM samDesired,
7. LPSECURITY_ATTRIBUTES lpSecurityAttributes,
8. PHKEY phkResult,
9. LPDWORD lpdwDisposition
);

Arguments 5, 6, 7 and 9 are pre-defined constants (per-
mission flags, attributes etc.) and can only take a finite and
small number of potential values (it’s also partially true for

Workshop on Binary Analysis Research (BAR) 2018
18 February 2018, San Diego, CA, USA
ISBN 1-891562-50-9
https://dx.doi.org/10.14722/bar.2018.23011
www.ndss-symposium.org

Related Work
• Towards Generic Deobfuscation of Windows API Calls (NDSS'18)
• Use Clever & Creative Ideas

• Windows APIs are designed with many magic numbers that can be used as
features for reverse engineering

• For example, the RegCreateKeyExA parameter HKEY_CURRENT_USER evaluates
to 0x80000001

• Predict Windows API names by using only the parameter context distribution of
function pointers

• Using Hidden Markov Model (HMM): Up to 87.6% of API names can be
recovered from the strip symbols binaries

• Practical Issues
• Since the Markov Model is too rough in scale, APIs with less than four

parameters cannot be analyzed
• Not all API parameters have magic numbers used as features L

#BHUSA @BlackHatEvents

Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search
against Code Obfuscation and Compiler Optimization

Steven H. H. Ding∗, Benjamin C. M. Fung∗, and Philippe Charland†
∗Data Mining and Security Lab, School of Information Studies, McGill University, Montreal, Canada.

Emails: steven.h.ding@mail.mcgill.ca, ben.fung@mcgill.ca
†Mission Critical Cyber Security Section, Defence R&D Canada - Valcartier, Quebec, QC, Canada.

Email: philippe.charland@drdc-rddc.gc.ca

Abstract—Reverse engineering is a manually intensive but
necessary technique for understanding the inner workings
of new malware, finding vulnerabilities in existing systems,
and detecting patent infringements in released software. An
assembly clone search engine facilitates the work of reverse
engineers by identifying those duplicated or known parts.
However, it is challenging to design a robust clone search
engine, since there exist various compiler optimization options
and code obfuscation techniques that make logically similar
assembly functions appear to be very different.

A practical clone search engine relies on a robust vector
representation of assembly code. However, the existing clone
search approaches, which rely on a manual feature engineering
process to form a feature vector for an assembly function,
fail to consider the relationships between features and identify
those unique patterns that can statistically distinguish assembly
functions. To address this problem, we propose to jointly learn
the lexical semantic relationships and the vector representation
of assembly functions based on assembly code. We have devel-
oped an assembly code representation learning model Asm2Vec.
It only needs assembly code as input and does not require
any prior knowledge such as the correct mapping between
assembly functions. It can find and incorporate rich semantic
relationships among tokens appearing in assembly code. We
conduct extensive experiments and benchmark the learning
model with state-of-the-art static and dynamic clone search
approaches. We show that the learned representation is more
robust and significantly outperforms existing methods against
changes introduced by obfuscation and optimizations.

1. Introduction

Software developments mostly do not start from scratch.
Due to the prevalent and commonly uncontrolled reuse of
source code in the software development process [1], [2],
[3], there exist a large number of clones in the underlying
assembly code as well. An effective assembly clone search
engine can significantly reduce the burden of the manual
analysis process involved in reverse engineering. It addresses
the information needs of a reverse engineer by taking ad-
vantage of existing massive binary data.

Assembly code clone search is emerging as an Infor-
mation Retrieval (IR) technique that helps address security-
related problems. It has been used for differing binaries to
locate the changed parts [4], identifying known library func-
tions such as encryption [5], searching for known program-

ming bugs or zero-day vulnerabilities in existing software or
Internet of Things (IoT) devices firmware [6], [7], as well as
detecting software plagiarism or GNU license infringements
when the source code is unavailable [8], [9]. However,
designing an effective search engine is difficult, due to vari-
eties of compiler optimizations and obfuscation techniques
that make logically similar assembly functions appear to
be dramatically different. Figure 1 shows an example. The
optimized or obfuscated assembly function breaks control
flow and basic block integrity. It is challenging to identify
these semantically similar, but structurally and syntactically
different assembly functions as clones.

Developing a clone search solution requires a robust
vector representation of assembly code, by which one can
measure the similarity between a query and the indexed
functions. Based on the manually engineered features, rel-
evant studies can be categorized into static or dynamic ap-
proaches. Dynamic approaches model the semantic similar-
ity by dynamically analyzing the I/O behavior of assembly
code [10], [11], [12], [13]. Static approaches model the
similarity between assembly code by looking for their static
differences with respect to the syntax or descriptive statistics
[6], [7], [8], [14], [15], [16], [17], [18]. Static approaches
are more scalable and provide better coverage than the
dynamic approaches. Dynamic approaches are more robust
against changes in syntax but less scalable. We identify
two problems which can be mitigated to boost the semantic
richness and robustness of static features. We show that by
considering these two factors, a static approach can even
achieve better performance than the state-of-the-art dynamic
approaches.

P1: Existing state-of-the-art static approaches fail to
consider the relationships among features. LSH-S [16], n-
gram [8], n-perm [8], BinClone [15] and Kam1n0 [17]
model assembly code fragments as frequency values of
operations and categorized operands. Tracelet [14] models
assembly code as the editing distance between instruction
sequences. Discovre [7] and Genius [6] construct descriptive
features, such as the ratio of arithmetic assembly instruc-
tions, the number of transfer instructions, the number of
basic blocks, among others. All these approaches assume
each feature or category is an independent dimension. How-
ever, a xmm0 Streaming SIMD Extensions (SSE) register is
related to SSE operations such as movaps. A fclose libc
function call is related to other file-related libc calls such
as fopen. A strcpy libc call can be replaced with memcpy.
These relationships provide more semantic information than

���

�����*&&&�4ZNQPTJVN�PO�4FDVSJUZ�BOE�1SJWBDZ

¥������4UFWFO�)��)��%JOH��6OEFS�MJDFOTF�UP�*&&&�
%0*���������41�����������

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 01,2022 at 07:44:01 UTC from IEEE Xplore. Restrictions apply.

Related Work
• Asm2Vec: Boosting Static Representation Robustness for

Binary Clone Search against Code Obfuscation and Compiler
Optimization (S&P'19)

• Based on the Neural Network (NN) approach
• Learn the instruction-level semantics of program binary effectively

• Identify if an unknown binary is a variant of and similar to known programs

• Even if OLLVM is fully enabled!

• Practical Issues
• Non-explanatory: it is difficult to explain why this sample is identified as a

known sample variant

• Only works on classifying samples

• Unable to precisely identify if binary has a specific malicious attack in a
large number of behaviors

#BHUSA @BlackHatEvents

What is Symbolic Execution?

#BHUSA @BlackHatEvents

What is Symbolic Execution?
stmt: main()

stmt: atoi()

assign const: 4 stmt: WinExec()

cmp

var: x

op: and

branch

if return

func

func

const: 0

const: 0var: argv[3]

var: argv[1] stmt: atoi()

assign const: 8

cmp

var: y func

var: argv[2]

#BHUSA @BlackHatEvents

What is Symbolic Execution?
stmt: main()

stmt: atoi()

assign const: 4 stmt: WinExec()

cmp

var: x

op: and

branch

if return

func

func

const: 0

const: 0var: argv[3]

var: argv[1] stmt: atoi()

assign const: 8

cmp

var: y func

var: argv[2]

#BHUSA @BlackHatEvents

Why We Use Symbolic Execution to Solve
Those Difficult Problem?

• Emulator: resource consumption, many problem about simulating environment, I/O, and
can be bypassed

• Sandbox: Use real environment but also can be bypassed (Command line parameter,
Anti-VM, Anti-sandbox, anti-debug…)

• Traditional Static analysis: can be bypassed easier. High false positives
• Symbolic Execution based: we use the lightweight part – DefUse relationship

• It is enough to solve the problem of malware analysis, strengthen contextual relevance, semantic-based
analysis, reduce false positives, and furthermore, full static analysis will not have the risk of being
compromised

• Low development cost and high adjustment flexibility

#BHUSA @BlackHatEvents

Our Practical Symbolic Engine
• Engine Architecture

Vivisect as
Decompiler Module

Taint Analysis
Module via DefUse

Emulation Monitor
Module

(Static emulate win32
environment)

Control Flow
Graph Analysis

Module

Obfuscated API
Identifier Module

Detection
Signature

Suspicious Target

Malicious

Benign

Attack Techniques
Ransomware
Behivor
…

Few Seconds to 1.5 Minutes in average

#BHUSA @BlackHatEvents

Traditional vs. Lightweight Symbolic Execution

Angr TCSA

AST Expression PyVex X

CFG Emulation Full CFG / Fast CFG Coverage based

Solver Claripy X

Taint Analysis V V

Malware Signature Support X TCSA rule, Yara rule, Capa
rule

Solve the problem of obfuscated API X V

Finished in limited time X V

#BHUSA @BlackHatEvents

CFG Analysis Module
• Control Flow Graph (CFG) Analyze Module

Parse function block based on our engine

#BHUSA @BlackHatEvents

Taint Analysis Module
• Taint Analysis Module via DefUse

Part of Taint Analysis Example: all called APIs of static code, their return values are given by an assumed symbolic
value, which can be used later to track the use of the situation.

Taint Analysis demo context result

#BHUSA @BlackHatEvents

Unknown API Recognition
• NDSS’18: Obfuscated API Identifier Module

• Real samples often have symbols removed or obfuscated, so fuzzy identification can help to identify
what kind of API(s) it is, and thus determine what function it performs

#BHUSA @BlackHatEvents

Prototype

#BHUSA @BlackHatEvents

Obfuscated Samples
• Obfuscated API Identifier Module

• Detect obfuscated ransomware samples
• Crysis

• 21dd1344dc8ff234aef3231678e6eeb4a1f25c395e1ab181e0377b7fcef4ef44

#BHUSA @BlackHatEvents

Crysis

#BHUSA @BlackHatEvents

OLLVM - FLA (Obfuscation)
• Crysis

#BHUSA @BlackHatEvents

Engine Scan
• Crysis

#BHUSA @BlackHatEvents

REvil
• 562f7daa506a731aa4b79656a39e69e31333251c041b2f5391518833f9723d62

#BHUSA @BlackHatEvents

REvil
• Obfuscated API Calls (GetProcAddress)

#BHUSA @BlackHatEvents

REvil

#BHUSA @BlackHatEvents

REvil

#BHUSA @BlackHatEvents

Deep Dive into Our Symbolic Engine
• TCSA (TXOne Code Semantics Analyzer)

• Malware detection with instruction-level Semantic automata
• Use Vivisect as the core decompiler engine

• Support AMD, ARM, x86, MSP430, H8 and many other architectures
• Support analysis of program files for Windows and Linux systems

• Pure Python based Engine: Works on any platform able to run Python
• In TCSA rule, developers can notate the relationship of data references between API calls

• Symbolized return values of Win32 API, function, or unknown API
• Usage of memory heap, stack, local variables, etc.

• DefUse: tracing the source of data, memory values, argument values from

• Support two additional feature extraction systems: YARA and Capa subsystems
• Developers Orienting Malware Scanning Design

• Developers can write their own Rules to be installed in the TCSA engine as callbacks
• The TCSA engine will traverse and explore each function and the instructions in its Code Block
• In the Callback, each instruction, memory, function name and parameter can be analyzed line by line

#BHUSA @BlackHatEvents

Deep Dive into Our Symbolic Engine
• Vivisect as Decompiler Module

• Stack Snapshot for Calls

#BHUSA @BlackHatEvents

Deep Dive into Our Symbolic Engine
• Vivisect as Decompiler Module

• Stack Snapshot for Calls

#BHUSA @BlackHatEvents

Deep Dive into Our Symbolic Engine
• Some functions that need to be implemented for the real Windows runtime results for

pure static analysis
• Process Execution Necessary: LoadLibrary, GetProcAddress, GetFullPathName, FindResource...

• String handling Necessary: sprintf、scanf、lstrlenA…

• Memory Handling Necessary: HeapAlloc、malloc、free…

#BHUSA @BlackHatEvents

Deep Dive into Our Symbolic Engine

• Malware Rule/Automata Developing
• Each TCSA Rule should have at least three callback, initialize, and cleanup callback functions.

• In the initialize function, developers have the ability to do some necessary preparation

• Developers can receive each instruction in the callback function with execution status from the TCSA engine
• Used to extract and collect instruction level features to identify specific behavior in a function

• Locate and mark potentially suspicious function

• Developers can make the final decision in the cleanup function to determine if a specific behavior has been found

• Based on the features collected in the callback

• based on the YARA/CAPA Rule match features

#BHUSA @BlackHatEvents

Outline
• Introduction

• Threat Overview

• The Difficult Problem of Static/Dynamic Malware Detection and Classification

• Deep Dive into Our Practical Symbolic Engine
• Related Work

• Our Practical Symbolic Engine

• Demonstration
• CRC32 & DLL ReflectiveLoader

• Process Hollowing

• Ransomware Detection

• Future Works and Closing Remarks

#BHUSA @BlackHatEvents

CRC32

#BHUSA @BlackHatEvents

CRC32 (Cont.)

#BHUSA @BlackHatEvents

ReflectiveLoader

• Traversing memory to locate its own PE
Image address

• Parsing its own IMAGE_NT_HEADERS
structure

• Allocate the memory of the
OptionalHeader.SizeOfImage size using VirtualAlloc.

• Mapping each section to its own PE Image to this new
memory

• Parse OptionalHeader.DataDirectory to resolve and
repair the import table

• Parse OptionalHeader.AddressOfEntryPoint and call
entry

#BHUSA @BlackHatEvents

ReflectiveLoader (Cont.)

#BHUSA @BlackHatEvents

ReflectiveLoader (Cont.)

#BHUSA @BlackHatEvents

T1055.012 Process Hollowing
• Process Hollowing Definition from MITRE

• Process hollowing is commonly performed by creating a process in a suspended state then
unmapping/hollowing its memory, which can then be replaced with malicious code.

• A victim process can be created with native Windows API calls such as CreateProcess, which includes
a flag to suspend the processes primary thread. At this point the process can be unmapped using APIs
calls such as ZwUnmapViewOfSection or NtUnmapViewOfSection before being written to, realigned
to the injected code, and resumed via VirtualAllocEx, WriteProcessMemory, SetThreadContext,
then ResumeThread respectively.

• How we collect Process Hollowing samples?
• APT group samples from MITRE

• APT group sample variant

https://attack.mitre.org/techniques/T1055/012/

#BHUSA @BlackHatEvents

T1055.012 Process Hollowing (Cont.)

• Create a suspended victim process by
CreateProcess

• Mount malicious modules in its memory

• Get the register EBX value by GetThreadContext
• The register EBX value will point to the PEB structure address of

that process.

• Modify the ImageBase on the PEB structure by
WriteProcessMemory

• Switching the main executed PE module to the malicious module

• Modify the EAX register so the execution entry jump
to the malware entry

#BHUSA @BlackHatEvents

T1055.012 Process Hollowing (Cont.)

#BHUSA @BlackHatEvents

T1055.012 Process Hollowing (Cont.)

#BHUSA @BlackHatEvents

T1055.012 Process Hollowing (Cont.)

#BHUSA @BlackHatEvents

T1055.012 Process Hollowing (Cont.)
• Process Hollowing Definition from MITRE

• Process hollowing is commonly performed by creating a process in a suspended state then
unmapping/hollowing its memory, which can then be replaced with malicious code

• A victim process can be created with native Windows API calls such as CreateProcess, which includes
a flag to suspend the processes primary thread. At this point the process can be unmapped using APIs
calls such as ZwUnmapViewOfSection or NtUnmapViewOfSection before being written to, realigned
to the injected code, and resumed via VirtualAllocEx, WriteProcessMemory, SetThreadContext,
then ResumeThread respectively

• How we collect Process Hollowing samples?
• APT group samples from MITRE

• APT group sample variant

• How about Obfuscated & Strip Symbols Hollowing Samples?

https://attack.mitre.org/techniques/T1055/012/

#BHUSA @BlackHatEvents

Striped Process Hollowing

#BHUSA @BlackHatEvents

Striped Process Hollowing (Cont.)

#BHUSA @BlackHatEvents

Striped Process Hollowing (Cont.)
• Experiment

• How we collect Hollowing samples?
• Time interval: 2022.1.1~Now

• Filter process
• Find in VirusTotal, behaviour_injected_processes

• More than 10 antivirus vendors, and it is Windows executable

• Using Classic Process Hollowing Definition (based on MITRE) and not packed.

• Results
• 141 / 233 -> 60.51% of injection samples from VirusTotal should be hollowing.

-> 39.49% Based on manual analysis, verified all these samples were not hollowing samples.

Cheat Engine, x64dbg, Chrome Installer …

#BHUSA @BlackHatEvents

Real World Ransomware Detection
• Basically, ransomware does the following capability

• Find unfamiliar files (such as FindFirstFile)

• Read/Write behavior in the same file (such as CreateFile -> ReadFile -> SetFilePointer ->WriteFile)

• Identify common encrypt function or algorithm (WinCrypt*, AES, ChaCha, RC4…)

• What are our criteria of detection?
• 3 features (file enumeration, file operations, encryption) detected or

• One of the chain
• File enumeration à Encryption

• File enumeration & File operations à Encryption

#BHUSA @BlackHatEvents

Real World Ransomware Detection (Cont.)
• Enumerate Files

WannaCry Ransomware sample via IDA Pro

#BHUSA @BlackHatEvents

Real World Ransomware Detection (Cont.)
• Taint file handle generated from CreateFile*

• Monitor file I/O API usage

#BHUSA @BlackHatEvents

Real World Ransomware Detection (Cont.)
• Encryption in Babuk Ransomware

1.

2.

3.

4.

file_handle_candidate

5.

6.

Store hFile

Load hFile

Load hFile

Load hFile

#BHUSA @BlackHatEvents

Real World Ransomware Detection (Cont.)
• Babuk Ransomware

#BHUSA @BlackHatEvents

Real World Ransomware Detection (Cont.)
• Babuk Ransomware

#BHUSA @BlackHatEvents

Real World Ransomware Detection (Cont.)
• Babuk Ransomware

#BHUSA @BlackHatEvents

Real World Ransomware Detection (Cont.)
• LockBit Ransomware

#BHUSA @BlackHatEvents

Real World Ransomware Detection (Cont.)
• LockBit Ransomware

#BHUSA @BlackHatEvents

Real World Ransomware Detection (Cont.)
• LockBit Ransomware

#BHUSA @BlackHatEvents

Real World Ransomware Detection (Cont.)
• Darkside Ransomware

#BHUSA @BlackHatEvents

Real World Ransomware Detection (Cont.)
• Darkside Ransomware

#BHUSA @BlackHatEvents

Real World Ransomware Detection (Cont.)
• Darkside Ransomware

#BHUSA @BlackHatEvents

Real World Ransomware Detection (Cont.)
• How we improve the detection rate?

• Darkside
• Customized Salsa20 matrix and encryption

• 4 rounds of linear shifting

#BHUSA @BlackHatEvents

Real World Ransomware Detection (Cont.)
• How we improve the detection rate?

• 7ev3n
• R5A Encryption

• fsopen() from msvcrt

Check if the first byte is ‘M’

Extend stream cipher key from filename
and encrypt the file content

#BHUSA @BlackHatEvents

Real World Ransomware Detection (Cont.)
• Experiment

• How we collect Ransomware samples?
• Time interval: 2021.06-2022.06

• Filter process
• Found in VirusTotal, more than 3 antivirus vendors identify ransomware, and it is Windows executable

• Automated dynamic analysis (commercial sandbox)

• Final check samples

• Get ransomware sample dataset

• Results

• 1153 / 1206 (95.60%) !!!

#BHUSA @BlackHatEvents

Real World Ransomware Detection (Cont.)
Purge Seven Phobos Lockbit Agent Explus Taleb Hive

Rents Medusalocker Cryptolocker Makop Redeemer Sodinokibi Garrantycrypt Tovicrypt

Conti Crysis Filecoder Crypren Hydracrypt Avoslocker Sevencrypt Crypmod

Sorikrypt Higuniel Paradise Cryptor Wixawm Zcrypt Sodinokib Xorist

Nemty Fakeglobe Emper Quantumlocker Blackmatter Revil Bastacrypt Ranzylocker

Avaddon Netfilm Wana Garrantdecrypt Smar Akolocker Cryptlock Wadhrama

Phoenix Spora Babuklocker Lockergoga Buhtrap Ryuk Nemisis Netwalker

Deltalocker Karmalocker Genasom Thundercrypt Wcry Hkitty Swrort Babuk

#BHUSA @BlackHatEvents

Real World Ransomware Detection (Cont.)
• Conti variants

• LockBit variants

Ransom.Win32.CONTI.SM.hp
Ransom.Win32.CONTI.SMTH.hp
Ransom.Win32.CONTI.SMYXBBU
Ransom.Win32.CONTI.SMYXBFD.hp
Ransom.Win32.CONTI.YACCA
Ransom.Win32.CONTI.YXCAAZ
Ransom.Win32.CONTI.YXCBSZ

• 7ev3n variants

Ransom.Win32.LOCKBIT.SMCET
Ransom.Win32.LOCKBIT.SMDS
Ransom.Win32.LOCKBIT.SMYEBGW
Ransom.Win32.LOCKBIT.YXBHC-TH
Ransom_LockBit.R002C0CGI21
Ransom_Lockbit.R002C0DCO22
Ransom_Lockbit.R002C0DHB21
Ransom_Lockbit.R002C0DHD21

Ransom_Seven.R002C0DA422
Ransom_Seven.R002C0DA522
Ransom_Seven.R002C0DA922
Ransom_Seven.R002C0DAA22
Ransom_Seven.R002C0DAF22
Ransom_Seven.R002C0DAP22
Ransom_Seven.R002C0DAR22
Ransom_Seven.R002C0DAS22
Ransom_Seven.R002C0DAT22
Ransom_Seven.R002C0DAV22
Ransom_Seven.R002C0DB122
Ransom_Seven.R002C0DB222
Ransom_Seven.R002C0DB322
Ransom_Seven.R002C0DB822
Ransom_Seven.R002C0DB922
Ransom_Seven.R002C0DBA22
Ransom_Seven.R002C0DBM22
Ransom_Seven.R002C0DC222
Ransom_Seven.R002C0DC922
Ransom_Seven.R002C0DCB22
Ransom_Seven.R002C0DCC22
Ransom_Seven.R002C0DCE22
Ransom_Sodin.R002C0PGM21
Ransom_EMPER.SM

#BHUSA @BlackHatEvents

Real World Ransomware Detection (Cont.)
• For some of undetected samples

• Prolock / PwndLocker
• Unknown Encryption Algorithm

CreateFileW

MoveFileW

Customized File Encryption

#BHUSA @BlackHatEvents

Real World Ransomware Detection (Cont.)
• Experiment

• By randomly finding 200 non-ransom samples from VirusTotal (2021/06/01 - 2022/06/01)

• False Positive: 0%

#BHUSA @BlackHatEvents

Outline
• Introduction

• Threat Overview

• The Difficult Problem of Static/Dynamic Malware Detection and Classification

• Deep Dive into Our Practical Symbolic Engine
• Related Work

• Our Practical Symbolic Engine

• Demonstration
• CRC32 & DLL ReflectiveLoader

• Process Hollowing

• Ransomware Detection

• Future Works and Closing Remarks

#BHUSA @BlackHatEvents

Sound Bytes
• In-depth understanding of the limitations and common issues with current static,

dynamic and machine learning detection

• In-depth understanding of why and how we choose symbolic execution and various
auxiliary methods to build symbolic engine and learn how to create the signature to
detect the kinds of attack and technique

• From our demonstration and comparison, learn that our novel method and engine are
indeed superior to the previous methods in terms of accuracy and validity and can be
used in the real world.

• Know the plan about opensource to gather the community power to strength the engine
and signature

#BHUSA @BlackHatEvents

Thanks for Listening

Hank ChenSheng-Hao Ma Mars Cheng
@hank0438@aaaddress1 @marscheng_

TXOne Networks Inc.

