
#BHUSA @BlackHatEvents

eBPF ELFs JMPing Through the
Windows

Richard Johnson

Trellix

#BHUSA @BlackHatEvents
Information Classification: General

Whoami

Richard Johnson
Senior Principal Security Researcher, Trellix
Vulnerability Research & Reverse Engineering

Owner, Fuzzing IO
Advanced Fuzzing and Crash Analysis Training

Contact
rjohnson@fuzzing.io
@richinseattle

Shout out to the Trellix Interns!

Kasimir Schulz Andrea Fioraldi

@abraxus7331 @andreafioraldi

mailto:rjohnson@fuzzing.io

#BHUSA @BlackHatEvents
Information Classification: General

Outline

➢ Origins and Applications of eBPF

➢ Architecture and Design of eBPF for Windows

➢ Attack Surface of APIs and Interfaces

➢ Fuzzing Methodology and Results

➢ Concluding Thoughts

#BHUSA @BlackHatEvents
Information Classification: General

What is eBPF

eBPF is a virtual CPU architecture and VM aka “Berkley Packet Filter” extended to a more

general purpose execution engine as an alternative to native kernel modules

eBPF programs are compiled from C into the virtual CPU instructions via LLVM and can

run in emulated or JIT execution modes and includes a static verifier as part of the loader

Execution is sandboxed and highly restricted in what memory it can access and how many

instructions each eBPF program may contain

eBPF is designed for high speed inspection and

modification of network packets and program execution

#BHUSA @BlackHatEvents
Information Classification: General

Origins of eBPF

Berkeley Packet Filter technology was developed in 1992 as a way to filter network packets

BPF was reimplemented for most Unix style operating systems and also ported to userland

Most users have interacted with BPF via tcpdump, wireshark, winpcap, or npcap

Using tcpdump and supplying a filter string like “dst host 10.10.10.10 and (tcp port 80 or tcp

port 443)” automatically compiles into a BPF filter for high performance.

We now call this older BPF interface cBPF or Classic BPF

#BHUSA @BlackHatEvents
Information Classification: General

Origins of eBPF

In December 2014, Linux kernel 3.18

was released with the addition of the

bpf() system call which implements the

eBPF API

eBPF extends BPF instructions to 64bit

and adds the concept of BPF Maps

which are arrays of persistent data

structures that can be shared between

eBPF programs and userspace

daemons

#BHUSA @BlackHatEvents
Information Classification: General

Origins of eBPF

eBPF extended the original BPF

concept to allow users to write general

purpose programs and call out to kernel

provided APIs

Each eBPF program is a single

function, but they may tail call into

others

All eBPF programs must pass a static

verifier that ensures safe execution

within the VM

#BHUSA @BlackHatEvents
Information Classification: General

Applications of eBPF

#BHUSA @BlackHatEvents
Information Classification: General

Linux eBPF Applications

More projects on https://ebpf.io/projects

#BHUSA @BlackHatEvents
Information Classification: General

Prior eBPF Research

Evil eBPF – Jeff Dileo, DEF CON 27 (2019)

Use of BPF_MAPS as IPC

Discussed the unprivileged interface BPF_PROG_TYPE_SOCKET_FILTER

Outlined a technique for ROP chain injection

With Friends like eBPF, who needs enemies – Guillaume Fournier, et al, BH USA 2021

eBPF Rootkit demonstrations hooking syscall returns and userspace APIs

Exfiltration over replaced HTTPS request packets

Extra Better Program Finagling (eBPF) – Richard Johnson, Toorcon 2021

Showed hooks on Linux for tracing intercepting process creation

Preempt loading libc with attacker controlled library (undebuggable from userland)

Hook all running processes

Provide a method for pivoting hooks into systemd-init

Fuzzed and previewed crashes in ubpf and PREVAIL verifier

#BHUSA @BlackHatEvents
Information Classification: General

eBPF for Windows Timeline

eBPF for Windows was announced in May 2021 https://cloudblogs.microsoft.com/opensource/2021/05/10/making-ebpf-work-on-windows/

“So far, two hooks (XDP and socket bind) have been added, and though these are networking-specific hooks,

we expect many more hooks and helpers, not just networking-related, will be added over time.”

August 2021 Microsoft, Netflix, Google, Facebook,

and Isovalent announce the eBPF Foundation as

part of the Linux Foundation

November 2021 added libbpf compatibility

and additional BPF_MAPS support https://cloudblogs.microsoft.com/opensource/2021/11/29/progress-on-making-ebpf-work-on-windows/

February 2022 Microsoft released a blog discussing efforts to port Cillium L4LB load balancer from Linux to

Windows https://cloudblogs.microsoft.com/opensource/2022/02/22/getting-linux-based-ebpf-programs-to-run-with-ebpf-for-windows/

#BHUSA @BlackHatEvents
Information Classification: General

eBPF for Windows Architecture

Unlike the Linux eBPF system which

is entirely contained in the kernel and

used via system calls, the Windows

version splits the system into several

components and imports several

opensource projects including the IO

Visor uBPF VM and the PREVAIL

static verifier*

#BHUSA @BlackHatEvents
Information Classification: General

eBPF for Windows

eBPF for Windows is currently capable of performing introspection and modification of

network packets and exposes a libbpf api compatibility layer for portability

eBPF for Windows is shipped as a standalone component with claims that is for easier

serviceability

eBPF for Windows is MIT Licensed and may be shipped as a component of third party

applications which may extend any of the layers

#BHUSA @BlackHatEvents
Information Classification: General

Creating eBPF Programs on Windows

On Windows, eBPF programs can be compiled from C source using LLVM

#BHUSA @BlackHatEvents
Information Classification: General

Creating eBPF Programs on Windows

The resulting output is an ELF object with eBPF bytecode stored in ELF sections

#BHUSA @BlackHatEvents
Information Classification: General

Creating eBPF Programs on Windows

The resulting output is an ELF object with eBPF bytecode stored in ELF sections

#BHUSA @BlackHatEvents
Information Classification: General

Creating eBPF Programs on Windows

The resulting output is an ELF object with eBPF bytecode stored in ELF sections

#BHUSA @BlackHatEvents
Information Classification: General

Creating eBPF Programs on Windows

Here’s an example of a more practical eBPF program for dropping certain packets

#BHUSA @BlackHatEvents
Information Classification: General

Creating eBPF Programs on Windows

Here’s an example of a more practical eBPF program for dropping certain packets

#BHUSA @BlackHatEvents
Information Classification: General

eBPF for Windows Program Types

BPF_PROG_TYPE_XDP

"Program type for handling incoming packets as early as possible.

Attach type(s): BPF_XDP"

BPF_PROG_TYPE_BIND

"Program type for handling socket bind() requests.

Attach type(s): BPF_ATTACH_TYPE_BIND"

BPF_PROG_TYPE_CGROUP_SOCK_ADDR

"Program type for handling various socket operations

Attach type(s): BPF_CGROUP_INET4_CONNECT BPF_CGROUP_INET6_CONNECT

BPF_CGROUP_INET4_RECV_ACCEPT BPF_CGROUP_INET6_RECV_ACCEPT"

BPF_PROG_TYPE_SOCK_OPS

"Program type for handling socket event notifications such as connection established

Attach type(s): BPF_CGROUP_SOCK_OPS"

#BHUSA @BlackHatEvents
Information Classification: General

eBPF for Windows libbpf API

Partial representation of current helper APIs

#BHUSA @BlackHatEvents
Information Classification: General

eBPF for Windows libbpf API

Partial representation of current helper APIs

#BHUSA @BlackHatEvents
Information Classification: General

eBPF for Windows libbpf API

#BHUSA @BlackHatEvents
Information Classification: General

eBPF for Windows Security Model

eBPF for Windows allows unsigned code to run in the kernel

Current DACLs require Administrative access to interact with the trusted service in

userland or the driver directly via IOCTLs to load eBPF programs

When eBPF bytecode is loaded by the service, a static verifier checks to ensure the

program will terminate within a certain number of instructions and not access out of bounds

memory.

The VM engine then can JIT code to x64 and pass native instructions to the kernel or run in

an interpreted mode executing the eBPF bytecode in the kernel* (Debug mode only)

#BHUSA @BlackHatEvents
Information Classification: General

eBPF for Windows Static Verifier

On Linux, the kernel has it’s own static verifier that runs when eBPF code is loaded via

system calls

On Windows, an opensource component called PREVAIL has been used

PREVAIL has stronger security guarantees and uses abstract interpretation for a sound

analysis

Modern advancements in eBPF such as loops and tail calls are allowed

#BHUSA @BlackHatEvents
Information Classification: General

eBPF for Windows Execution Engine

On Linux, the original kernel implementation of the eBPF bytecode execution engine is

GPL licensed

On Windows, an opensource third party component from the IO Visor Project called uBPF

is used (https://github.com/iovisor/ubpf)

uBPF (Userspace eBPF VM) is BSD licensed and can run in user or kernel contexts

uBPF can be leveraged by other projects as a replacement for Lua or Javascript

#BHUSA @BlackHatEvents
Information Classification: General

eBPF for Windows Security Guarantees

The combination of the static verifier and sandboxed execution attempt to provide the

following security guarantees:

• eBPF Programs will terminate within a reasonable amount of time (limited by instruction

counts, loops are unrolled, etc)

• eBPF Programs will not read memory outside the bounds specified at compile time

• Registers are checked for value ranges, uninitialized use

• Stack references are contained to memory written by the program

• Arguments to function calls are type checked

• Pointers must be checked for NULL before dereferencing

• eBPF for Windows can also be run in a secure HVCI mode*

#BHUSA @BlackHatEvents
Information Classification: General

eBPF for Windows Attack Scenarios

Valid attack scenarios include:

• Code execution as Administrator due to parsing errors on loading 3rd party modules

• Code execution in the trusted service via RPC API implementation errors

• Code execution in the trusted service via static verifier or JIT compiler bugs

• Code execution in the kernel via static verifier, JIT compiler, or interpreter bugs

• Code execution in the kernel via IOCTL implementation errors

• Code execution in the kernel via shim hook implementation errors

#BHUSA @BlackHatEvents
Information Classification: General

eBPF4Win API (ebpfapi.dll)

The initial set of components in the eBPF for

Windows stack involve the user facing API

contained in ebpfapi.dll that allows loading and

unloading programs, creating and deleting

maps, and so on.

ebpfapi.dll is exposed through the bpftool.exe

and netsh interfaces and contains the API set

shown previously for loading programs,

manipulating maps, and the ability to verify ELF

sections from file path or memory

#BHUSA @BlackHatEvents
Information Classification: General

Fuzzing ebpfapi.dll

To fuzz the ELF loading API, we used a

combination of fuzzing the PREVAIL verifier

code on Linux and cross fuzzing as well as

directly harnessing ebpfapi.dll APIs with

libfuzzer

We will show some of the cross fuzzing results

later but here is the first vulnerability we

submitted to Microsoft..

#BHUSA @BlackHatEvents
Information Classification: General

EbpfApi Arbitrary Code Execution

Our first vulnerability is a heap corruption which calls free() on user controlled data during

the parsing of the ELF object containing an eBPF program. Initial corruption occurs during

the parsing of ELF relocation sections.

CommandLine: bpftool.exe prog load crash.o xdp

===
VERIFIER STOP 000000000000000F: pid 0x2D24: corrupted suffix pattern

00000267F2D91000 : Heap handle
00000267F3AA2FC0 : Heap block
0000000000000038 : Block size
00000267F3AA2FF8 : corruption address

===

...

0:000> db 00000267F3AA2FF8 l20
00000267`f3aa2ff8 41 41 41 41 00 d0 d0 d0-?? ?? ?? ?? ?? ?? ?? ?? AAAA....????????
00000267`f3aa3008 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ????????????????

#BHUSA @BlackHatEvents
Information Classification: General

EbpfApi Arbitrary Code Execution

This attack would involve an Administrator loading a malicious prebuilt eBPF program or

compiling a malicious project file which contained header data for an undersized relocation

section which, when free()’d by the destructor for the relocation object would allow an

attacker arbitrary code execution

0:000> k
Child-SP RetAddr Call Site
...
07 0000003c`c56ff060 00007ffc`151185ca verifier!AVrfp_ucrt_free+0x4d
08 (Inline Function) --------`-------- EbpfApi!std::_Deallocate+0x2a
09 (Inline Function) --------`-------- EbpfApi!std::allocator<ebpf_inst>::deallocate+0x2e
0a (Inline Function) --------`-------- EbpfApi!std::vector<ebpf_inst,std::allocator<ebpf_inst> >::_Tidy+0x40
0b (Inline Function) --------`-------- EbpfApi!std::vector<ebpf_inst,std::allocator<ebpf_inst> >::{dtor}+0x40
0c 0000003c`c56ff090 00007ffc`15144778 EbpfApi!raw_program::~raw_program+0x7a
0d 0000003c`c56ff0c0 00007ffc`15144fac EbpfApi!read_elf+0x9a8
0e 0000003c`c56ff550 00007ffc`15114fa0 EbpfApi!read_elf+0xbc
0f 0000003c`c56ff790 00007ffc`1510151b EbpfApi!load_byte_code+0x140
10 0000003c`c56ffa50 00007ffc`1510374d EbpfApi!_initialize_ebpf_object_from_elf+0x16b
11 0000003c`c56ffb30 00007ffc`1513c81e EbpfApi!ebpf_object_open+0x1ed

#BHUSA @BlackHatEvents
Information Classification: General

EbpfApi Arbitrary Code Execution

Due to the looping nature of ELF parsing and arbitrary control of sizes and contents, we

have high confidence this vulnerability can be exploited in practice

0:000> !heap -p -a 000001e45c188c98
address 000001e45c188c98 found in
_HEAP @ 1e45c100000

HEAP_ENTRY Size Prev Flags UserPtr UserSize – state
000001e45c188c10 000b 0000 [00] 000001e45c188c60 00038 - (busy)
7ffc18c044c1 verifier!AVrfDebugPageHeapAllocate+0x0000000000000431
...
7ffc1513caef EbpfApi!operator new+0x000000000000001f
7ffc151425f4 EbpfApi!std::vector<ebpf_inst,std::allocator<ebpf_inst> >::_Range_construct_or_tidy<ebpf_inst *

__ptr64>+0x0000000000000064
7ffc15142c67 EbpfApi!ELFIO::relocation_section_accessor_template<ELFIO::section const

>::generic_get_entry_rela<ELFIO::Elf64_Rela>+0x0000000000000177
7ffc15144258 EbpfApi!read_elf+0x0000000000000488
7ffc15144fac EbpfApi!read_elf+0x00000000000000bc
7ffc15114fa0 EbpfApi!load_byte_code+0x0000000000000140
7ffc1510151b EbpfApi!_initialize_ebpf_object_from_elf+0x000000000000016b
7ffc1510374d EbpfApi!ebpf_object_open+0x00000000000001ed

#BHUSA @BlackHatEvents
Information Classification: General

eBPF4Win Service (ebpfsvc.dll)

The eBPF for Windows Service contains PREVAIL and

uBPF code bases and exposes an RPC based API

The RPC service exports a single API for verifying and

loading a program:

ebpf_result_t verify_and_load_program(

[in, ref] ebpf_program_load_info * info,

[out, ref] uint32_t * logs_size,

[out, size_is(, *logs_size), ref] char** logs);

#BHUSA @BlackHatEvents
Information Classification: General

eBPF4Win Service (ebpfsvc.dll)

The verify_and_load_program RPC API is called

through the internal API ebpf_program_load_bytes
function that is ultimately exposed as part of the libbpf

API bpf_prog_load

It is also called by the ebpf_object_load function

which is contained in EbpfAPI and is how netsh and

bpftool load programs via the service

#BHUSA @BlackHatEvents
Information Classification: General

PREVAIL Static Verifier

The PREVAIL Static Verifier is “a Polynomial-

Runtime EBPF Verifier using an Abstract

Interpretation Layer”

Designed to be faster and more precise than the

Linux static verifier and it is dual licensed MIT and

Apache so it can be used anywhere alongside uBPF

#BHUSA @BlackHatEvents
Information Classification: General

PREVAIL Static Verifier

It includes a simple standalone tool called ‘check’

which is easily fuzzed with a file fuzzing approach

#BHUSA @BlackHatEvents
Information Classification: General

Fuzzing PREVAIL

#BHUSA @BlackHatEvents
Information Classification: General

Fuzzing PREVAIL

#BHUSA @BlackHatEvents
Information Classification: General

Fuzzing PREVAIL

#BHUSA @BlackHatEvents
Information Classification: General

Fuzzing PREVAIL

#BHUSA @BlackHatEvents
Information Classification: General

Fuzzing PREVAIL

#BHUSA @BlackHatEvents
Information Classification: General

uBPF

uBPF (Userspace BPF) is an independent

reimplementation of the eBPF bytecode interpreter

and JIT engine that is BSD licensed and can run in

user or kernel contexts

Similar to PREVAIL, uBPF comes with a simple

reference implementation of the VM with the ability to

load and run eBPF programs. It does not have any

helper functions or maps available and is only a virtual

CPU and execution environment

#BHUSA @BlackHatEvents
Information Classification: General

Fuzzing uBPF

#BHUSA @BlackHatEvents
Information Classification: General

Fuzzing uBPF

#BHUSA @BlackHatEvents
Information Classification: General

Fuzzing uBPF JIT

#BHUSA @BlackHatEvents
Information Classification: General

Fuzzing uBPF JIT

#BHUSA @BlackHatEvents
Information Classification: General

Fuzzing uBPF JIT

#BHUSA @BlackHatEvents
Information Classification: General

Fuzzing uBPF JIT

#BHUSA @BlackHatEvents
Information Classification: General

Fuzzing ebpfsvc.dll

Our initial attempts at fuzzing involved cross fuzzing

using the pile of crashes we had found in the

individual components but we were hitting crashes

too early in the API

We began fuzzing with WTF but this coincided with

the checkin of Microsoft’s own libfuzzer harness for

PREVAIL which found many of the same bugs so no

new bugs were found

#BHUSA @BlackHatEvents
Information Classification: General

eBPF4Win Kernel (ebpfcore.sys)

In addition to the RPC interface exposed by the eBPFSvc

the kernel module exposes a set of IOCTLs for

manipulating programs and maps

Currently the ACL on the Device Object requires

Administrator privileges so the impact is limited at this

point in time, however this is meant to be proactive

vulnerability analysis so we will fuzz the IOCTL layer

#BHUSA @BlackHatEvents
Information Classification: General

ebpfcore.sys IOCTL Interface

IOCTL Functions

0x0 resolve_helper 0x10 get_ec_function

0x1 resolve_map 0x11 get_program_info

0x2 create_program 0x12 get_pinned_map_info

0x3 create_map 0x13 get_link_handle_by_id

0x4 load_code 0x14 get_map_handle_by_id

0x5 map_find_element 0x15 get_program_handle_by_id

0x6 map_update_element 0x16 get_next_link_id

0x7 map_update_element_with_handle 0x17 get_next_map_id

0x8 map_delete_element 0x18 get_next_program_id

0x9 map_get_next_key 0x19 get_object_info

0xa query_program_info 0x1a get_next_pinned_program_path

0xb update_pinning 0x1b bind_map

0xc get_pinned_object 0x1c ring_buffer_map_query_buffer

0xd link_program 0x1d ring_buffer_map_async_query

0xe unlink_program 0x1e load_native_module

0xf close_handle 0x1f load_native_programs

#BHUSA @BlackHatEvents
Information Classification: General

Fuzzing ebpfcore.sys

The majority of attack surface is available via fuzzing the

IOCTL interface for ebpfcore.sys

To fuzz kernel attack surface a more sophisticated

technique was used

Emulation and snapshot based fuzzing was used

leveraging the WTF fuzzer tool from Axel Souchet

Multiple IOCTL requests can be sent in sequence

between memory restoration from snapshot

#BHUSA @BlackHatEvents
Information Classification: General

Snapshot Fuzzing

An advanced fuzzing technique that uses

emulators to continue code execution of a

snapshot of a live system to allow researchers to

fuzz specific areas of code.

Benefits:

• Allows researchers to create small and quick fuzzing

loops in complex programs.

• Allows researchers to create large amounts of complexity

in the program before fuzzing so that the fuzzer does not

need to set up complexity.

• Allows researchers to fuzz "hard to reach" areas of code.

#BHUSA @BlackHatEvents
Information Classification: General

WTF Fuzzer

WTF Fuzzer

Advantages

▪ Distributed

▪ Code-Coverage Guided

▪ Customizable

▪ Cross Platform

Tradeoffs

▪ Out of the box cannot
handle:

– Task Switching

– Device IO

▪ Still in Development

#BHUSA @BlackHatEvents
Information Classification: General

WTF Fuzzer

To write a fuzzer with WTF, a

few functions must be

implemented

Init() sets up breakpoints in the

emulator to handle events

InsertTestcase() is called with

fuzzed data

#BHUSA @BlackHatEvents
Information Classification: General

WTF Fuzzer

There are also optional

callbacks for custom data

generators and the snapshot

restore event

For multi-packet or IOCTL

requests, the user implements

a serialization format

#BHUSA @BlackHatEvents
Information Classification: General

WTF vs ebpfcore.sys

We created a harness based on the excellent tlv_server

harness that is included with WTF. The original is

designed to simulate sending multiple network packets to

an interface.

We forked this code and had it send IOCTL requests via

DeviceIOControlFile calls instead

#BHUSA @BlackHatEvents
Information Classification: General

WTF vs ebpfcore.sys

For multi IOCTL requests

we created a JSON based

serialization format

The serialized testcase

contains an array of

requests that include the

bytes of the data in the

Body along with the

Length, IOCTL

OperationID, and expected

ReplyLength

#BHUSA @BlackHatEvents
Information Classification: General

_ebpf_murmur3_32 Crash

Crash Type: Read Access Violation

Crash Cause:

• By setting the length in the packet header to a value

less than the offset to the path in the packet struct you

can underflow the length of the string struct created.

• The string is then passed into the ebpf_murmur

function along with the length, at which point the loop

inside the function will read past the end of the string

and into memory it should not have access to.

#BHUSA @BlackHatEvents
Information Classification: General

_ebpf_murmur3_32 Crash

#BHUSA @BlackHatEvents
Information Classification: General

ubpf_destroy Crashes

Crash Type: Null Pointer Dereference

Crash Cause:

• ubpf_create runs out of memory while trying to calloc

space for structs due to memory exhaustion.

• The function fails and returns a null value for the vm

which is then passed into ubpf_destroy

causing different null pointer dereferences depending

on when the program ran out of memory.

• Note: multiple unique variations were found

#BHUSA @BlackHatEvents
Information Classification: General

ubpf_destroy Crashes

#BHUSA @BlackHatEvents
Information Classification: General

trampoline_table Crash

Crash Type: Null Pointer Dereference

Crash Cause:

• When a program is created a callback is added to it which is trigger under certain

conditions.

• If a resolve helper call is done on the program the callback is triggered, however, if the

resolve helper function fails then the trampoline_table can become null.

• If the user then tries to load code the program will crash due to a null dereference.

#BHUSA @BlackHatEvents
Information Classification: General

trampoline_table Crash

#BHUSA @BlackHatEvents
Information Classification: General

trampoline_table Crash

#BHUSA @BlackHatEvents
Information Classification: General

AFL-NYX vs ebpfcore.sys

In addition to WTF, we also ported the same harness to

the NYX hypervisor based snapshot fuzzer to assess

capabilities and performance

NYX had significantly faster execution speed compared to

WTF but did not find unique bugs due to the thoroughness

of the initial fuzzer design

We did of course find similar bugs..

#BHUSA @BlackHatEvents
Information Classification: General

AFL-NYX vs ebpfcore.sys

#BHUSA @BlackHatEvents
Information Classification: General

eBPF4Win Kernel Extension Modules

eBPF for Windows is designed with a modular architecture on the kernel side

Instrumentation support is added to eBPF for Windows via “extension modules”

The current implementation provides a network shimming interface to allow for packet

inspection and rewriting at multiple levels

#BHUSA @BlackHatEvents
Information Classification: General

eBPF4Win Network Shims (netebpfext.sys)

Microsoft is currently focused on observing and

instrumenting network packets in the current eBPF

implementation

Hook implementations can contain exploitable bugs

that may be hard to detect

In this case we did a manual code review of the xdp,

bind, and cgroup hooks and did not find any

implementation errors.

#BHUSA @BlackHatEvents
Information Classification: General

eBPF4Win Code Hooks

On Linux, eBPF has strong integration with uprobe, kprobe, and tracepoint code hooking

interfaces

Microsoft has libraries capable of providing similar code hooking abilities such as Detours

Currently code hooking is not supported via eBPF for Windows

An additional kernel extension module for code hooking can be added in the future to sit

alongside netebpfext.sys

#BHUSA @BlackHatEvents
Information Classification: General

Concluding Thoughts

• eBPF is exciting technology for telemetry and instrumentation on modern operating

systems

• Microsoft has adapted opensource projects uBPF and PREVAIL to provide the

foundation for their eBPF implementation

• We found one serious ACE vulnerability and several robustness bugs during our fuzzing

of the driver and userland loader code

• Microsoft has been quickly adding fuzz testing to their repo since May which has fixed

many of the bugs found in the opensource projects

• With the creation of the eBPF foundation backed by several major industry players,

eBPF is positioned to become a core technology for desktop, server, and cloud

• Trellix is committed to proactive vulnerability research to benefit the community

#BHUSA @BlackHatEvents
Information Classification: General

Thank you!

Richard Johnson, Trellix

@richinseattle on Twitter

