
Go With the Flow: Enforcing Program Behavior

Through Syscall Sequences and Origins

Claudio Canella

claudio.canella@iaik.tugraz.at

Abstract

As the number of vulnerabilities continues to increase every year, we require
more and more methods of constraining the applications that run on our sys-
tems. Control-Flow Integrity [1] (CFI) is a concept that constrains an applica-
tion by limiting the possible control-flow transfers it can perform, i.e., control
flow can only be re-directed to a set of previously determined locations within
the application. However, CFI only applies within the same security domain,
i.e., only within kernel or userspace. Linux seccomp [4], on the other hand,
restricts an application’s access to the syscall interface exposed by the operat-
ing system. However, seccomp can only restrict access based on the requested
syscall, but not whether it is allowed in the context of the previous one.

This talk presents our concept of syscall-flow-integrity protection (SFIP),
which addresses these shortcomings. SFIP is built upon three pillars: a state
machine representing valid transitions between syscalls, a syscall-origin map
that identifies locations from where each syscall can originate, and the sub-
sequent enforcement by the kernel. We discuss these three pillars and how
our automated toolchain extracts the necessary information. Finally, we evalu-
ate the performance and security of SFIP. For the performance evaluation, we
demonstrate that SFIP only has a marginal runtime overhead of less than 2 %
in long-running applications like nginx or memcached. In the security evalu-
ation, we first discuss the provided security of the first pillar, i.e., the syscall
state machine. We show that SFIP reduces the number of possible syscall tran-
sitions significantly compared to Linux seccomp.. In nginx, each syscall can,
on average, reach 39 % fewer syscalls than with seccomp-based protection. We
also evaluate the provided security of the second pillar, i.e., the syscall-origin
map. By enforcing the syscall origin, we eliminate shellcode entirely while con-
straining syscalls executed during a Return-Oriented Programming attack to
legitimate locations.

1 Overview

This whitepaper covers our talk’s topics and provides technical background.
The whitepaper is a pre-print of our paper “SFIP: Coarse-Grained Syscall-Flow-
Integrity Protection in Modern Systems” [2]. It presents our talk’s content in
more detail, such as the three pillars of SFIP and the challenges in automatically
extracting the required information. It also provides detailed information on

how our implementation solves these challenges in our public proof-of-concept [3]
as well as a more detailed evaluation. We also discuss how such systems can be
further improved by extracting thread- or signal-specific syscall transitions and
outlines the idea for a more fine-grained construction of the syscall transitions.

The main takeaways of both the talk and the whitepaper are as follows.
1. Protecting the syscall interface is important for security and requires more

sophisticated approaches than currently available.
2. Automatically extracting the necessary information is challenging but fea-

sible.
3. Enforcing the extracted information can be done with a minimal runtime

overhead while significantly reducing the number of syscall transitions and
origins.

References

[1] Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J. Control-Flow
Integrity. In CCS (2005).

[2] Canella, C., Dorn, S., Gruss, D., and Schwarz, M. SFIP:
Coarse-Grained Syscall-Flow-Integrity Protection in Modern Systems.
arXiv:2202.13716 (2022).

[3] Canella, C., Dorn, S., and Schwarz, M. SFIP/SFIP, https://

github.com/SFIP/SFIP 2022.

[4] Edge, J. A seccomp overview, https://lwn.net/Articles/656307/ 2015.

SFIP: Coarse-Grained Syscall-Flow-Integrity Protection in Modern
Systems

Abstract
Control-Flow Integrity (CFI) is one promising mitiga-

tion that is more and more widely deployed and prevents
numerous exploits. However, CFI focuses purely on one
security domain, and transitions between user space and
kernel space are not protected. Furthermore, if user-
space CFI is bypassed, the system and kernel interfaces
remain unprotected, and an attacker can run arbitrary
transitions.

In this paper, we introduce the concept of syscall-flow-
integrity protection (SFIP) that complements the concept
of CFI with integrity for user-kernel transitions. Our
proof-of-concept implementation relies on static analy-
sis during compilation to automatically extract possible
syscall transitions. An application can opt-in to SFIP
by providing the extracted information to the kernel for
runtime enforcement. The concept is built on three fully-
automated pillars: First, a syscall state machine, repre-
senting possible transitions according to a syscall digraph
model. Second, a syscall-origin mapping, which maps
syscalls to the locations at which they can occur. Third,
an efficient enforcement of syscall-flow integrity in a mod-
ified Linux kernel. In our evaluation, we show that SFIP
can be applied to large scale applications with minimal
slowdowns. In a micro- and a macrobenchmark, it only
introduces an overhead of 13.1 % and 7.4 %, respectively.
In terms of security, we discuss and demonstrate its ef-
fectiveness in preventing control-flow-hijacking attacks
in real-world applications. Finally, to highlight the re-
duction in attack surface, we perform an analysis of the
state machines and syscall-origin mappings of several
real-world applications. On average, SFIP decreases the
number of possible transitions by 41.5 % compared to
seccomp and 91.3 % when no protection is applied.

1. Introduction

Vulnerablities in applications can be exploited by an at-
tacker to gain arbitrary code execution within the applica-
tion [62]. Subsequently, the attacker can exploit further
vulnerabilities in the underlying system to elevate priv-
ileges [37]. Such attacks can be mitigated in either of
these two stages: the stage where the attacker takes over
control of a victim application [62, 13], or the stage where

the attacker exploits a bug in the system to elevate privi-
leges [36, 38]. Researchers and industry have focused on
eliminating the first stage, where an attacker takes over
control of a victim application, by reducing the density
of vulnerabilities in software, e.g., by enforcing memory
safety [62, 13]. The second line of defense, protecting the
system, has also been studied extensively [36, 38, 22, 61].
For instance, sandboxing is a technique that tries to limit
the available resources of an application, reducing the
remaining attack surface. Ideally, an application only has
the bare minimum of resources, e.g., syscalls, that are
required to work correctly.

Control-flow integrity [1] (CFI) is a mitigation that
limits control-flow transfers within an application to a set
of pre-determined locations. While CFI has demonstrated
that it can prevent attacks, it is not infallible [29]. Once
it has been circumvented, the underlying system and its
interfaces are once again exposed to an attacker as CFI
does not apply protection across security domains.

In the early 2000s, Wagner and Dean [65] proposed an
automatic, static analysis approach that generates syscall
digraphs, i.e., a k-sequence [19] of consecutive syscalls of
length 2. A runtime monitor validates whether a transition
is possible from the previous syscall to the current one
and raises an alarm if it is not. The Secure Computing
interface of Linux [18], seccomp, simplifies the concept
by only validating whether a syscall is allowed, but not
whether it is allowed in the context of the previous one.
Recent work has explored hardware support for Linux
seccomp to improve its performance [60]. In contrast
to the work by Wagner and Dean [65] and other intru-
sion detection systems [21, 25, 32, 34, 44, 68, 47, 63, 69],
seccomp acts as an enforcement tool instead of a simple
monitoring system. Hence, false positives are not accept-
able as they would terminate a benign application. Thus,
we ask the following questions in this paper:

Can the concept of CFI be applied to the user-kernel
boundary? Can prior syscall-transition-based intrusion
detection models, e.g., digraph models [65], be trans-
formed into an enforcement mechanism without breaking
modern applications?

In this paper, we answer both questions in the affirma-
tive. We introduce the concept of syscall-flow-integrity
protection (SFIP), complementing the concept of CFI

with integrity for user-kernel transitions. Our proof-of-
concept implementation relies on static analysis during
compilation to automatically extract possible syscall tran-
sitions. An application can opt-in to SFIP by providing
the extracted information to the kernel for runtime en-
forcement. SFIP builds on three fully-automated pillars,
a syscall state machine, a syscall-origin mapping, and an
efficient SFIP enforcement in the kernel.

The syscall state machine represents possible transi-
tions according to a syscall digraph model. In contrast to
Wagner and Dean’s [65] runtime monitor, we rely on an
efficient state machine expressed as an N×N matrix (N
is the number of provided syscalls), that scales even to
large and complex applications. We provide a compiler-
based proof-of-concept implementation, called SysFlow1,
that generates such a state machine instead of individ-
ual sets of k-sequences. For every available syscall, the
state machine indicates to which other syscalls a tran-
sition is possible. Our syscall state machine (i.e., the
modified digraph) has several advantages including faster
lookups (O(1) instead of O(M) with M being the number
of possible k-sequences), easier construction, and less and
constant memory overhead.

The syscall-origin mapping maps syscalls to the lo-
cations at which they can occur. Syscall instructions in a
program may be used to perform different syscalls, i.e.,
a bijective mapping between code location and syscall
number is not guaranteed. We resolve the challenge of
these non-bijective mappings with a mechanism propagat-
ing syscall information from the compiler frontend and
backend to the linker, enabling the precise enforcement
of syscalls and their origin. During the state transition
check, we additionally check whether the current syscall
originates from a location at which it is allowed to occur.
For this purpose, we extend our syscall state machine
with a syscall-origin mapping that can be bijective or
non-bijective, which we extract from the program. Conse-
quently, our approach eliminates syscall-based shellcode
attacks and imposes additional constraints on the con-
struction of ROP chains.

The efficient enforcement of syscall-flow integrity is
implemented in the Linux kernel. Instead of detection,
i.e., logging the intrusion and notifying a user as is the
common task for intrusion detection systems [39], we
focus on enforcement. Our proof-of-concept implemen-
tation places the syscall state machine and non-bijective
syscall-origin mapping inside the Linux kernel. This puts
our enforcement on the same level as seccomp, which
is also used to enforce the correct behavior of an appli-
cation. However, detecting the set of allowed syscalls
for seccomp is easier. As such, our enforcement is an
additional technique to sandbox an application, automati-

1https://github.com/SFIP/SFIP

cally limiting the post-exploitation impact of attacks. We
refer to our enforcement as coarse-grained syscall-flow-
integrity protection, effectively emulating the concept of
control-flow integrity on the syscall level.

We evaluate the performance of SFIP based on our ref-
erence implementation. In a microbenchmark, we only
observe an overhead on the syscall execution of up to
13.1 %, outperforming seccomp-based protections. In
real-world applications, we observe an average overhead
of 7.4 %. In long-running applications, such as ffmpeg,
nginx, and memcached, this overhead is even more neg-
ligible, with less than 1.8 % compared to an unprotected
version. We evaluate the one-time overhead of extracting
the information from a set of real-world applications. In
the worst case, we observe an increase in compilation
time by factor 28.

We evaluate the security of the concept of syscall-flow-
integrity protection in a security analysis with special
focus on control-flow hijacking attacks. We evaluate our
approach on real-world applications in terms of number of
states (i.e., syscalls with at least one outgoing transition),
number of average transitions per state, and other security-
relevant metrics. Based on this analysis, SFIP, on average,
decreases the number of possible transitions by 41.5 %
compared to seccomp and 91.3 % when no protection is
applied. Against control-flow hijacking attacks, we find
that in nginx, a specific syscall can, on average, only be
performed at the location of 3 syscall instructions instead
of in 318 locations. We conclude that syscall-flow in-
tegrity increases system security substantially while only
introducing acceptable overheads.

To summarize, we make the following contributions:
1. We introduce the concept of (coarse-grained) syscall-

flow-integrity protection (SFIP) to enforce legitimate
user-to-kernel transitions based on static analysis of
applications.

2. Our proof-of-concept SFIP implementation is based
on a syscall state machine and a mechanism to validate
a syscall’s origin.

3. We evaluate the security of SFIP quantitatively, show-
ing that the number of possible syscall transitions is
reduced by 91.3 % on average in a set of 8 real-world
applications, and qualitatively by analyzing the impli-
cations of SFIP on a real-world exploit.

4. We evaluate the performance of our SFIP proof-of-
concept implementation, showing an overhead of
13.1 % in a microbenchmark and 7.4 % in a mac-
robenchmark.

2. Background

2.1. Sandboxing

Sandboxing is a technique to constrain the resources of
an application to the absolute minimum necessary for an

application to still work correctly. For instance, a sandbox
might limit an application’s access to files, network, or
syscalls it can perform. A sandbox is often a last line
of defense in an already exploited application, trying to
limit the post-exploitation impact. Sandboxes are widely
deployed in various applications, including in mobile op-
erating systems [30, 3] and browsers [71, 54, 70]. Linux
also provides various methods for sandboxing, including
SELinux [72], AppArmor [4], or seccomp [18].

2.2. Digraph Model

The behavior of an application can be modeled by the
sequence of syscalls it performs. In intrusion detection
systems, windows of consecutive syscalls, so-called k-
sequences, have been used [19]. k-sequences of length
k = 2 are commonly referred to as digraphs [65]. A model
built upon these digraphs allows easier construction and
more efficient checking while reducing the accuracy in
the detection [65] as only previous and current syscall are
considered.

2.3. Linux Seccomp

The syscall interface is a security-critical interface that the
Linux kernel exposes to userspace applications. Applica-
tions rely on syscalls to request the execution of privileged
tasks from the kernel. Hence, securing this interface is
crucial to improving the system’s overall security.

To better secure this interface, the kernel provides
Linux Secure Computing (seccomp). A benign appli-
cation first creates a filter that contains all the syscalls it
intends to perform over its lifetime and then passes this
filter to the kernel. Upon a syscall, the kernel checks
whether the executed syscall is part of the set of syscalls
defined in the filter and either allows or denies it. As such,
seccomp can be seen as a k-sequence of length 1. In addi-
tion to the syscall itself, seccomp can filter static syscall
arguments. Hence, seccomp is an essential technique to
limit the post-exploitation impact of an exploit, as unre-
stricted access to the syscall interface allows an attacker
to arbitrarily read, write, and execute files. An even worse
case is when the syscall interface itself is exploitable, as
this can lead to privilege escalation [37, 36, 38].

2.4. Runtime Attacks

One of the root causes for successful exploits are memory
safety violations. One typical variant of such a violation
are buffer overflows, enabling an attacker to modify the
application in a malicious way [62]. An attacker tries to
use such a buffer overflow to overwrite a code pointer,
such that the control flow can be diverted to an attacker-
chosen location, e.g., to previously injected shellcode.
Attacks relying on shellcode have become harder to exe-
cute on modern systems due to data normally not being
executable [62, 49]. Therefore, attacks have to rely on

already present, executable code parts, so-called gadgets.
These gadgets are chained together to perform an arbi-
trary attacker-chosen task [51]. Shacham further general-
ized this attack technique as return-oriented programming
(ROP) [59]. Similar to control-flow-hijacking attacks that
overwrite pointers [59, 11, 43, 29, 56], memory safety vi-
olations can also be abused in data-only attacks [55, 35].

2.5. Control-Flow Integrity

Control-flow integrity [1] (CFI) is a concept that restricts
an application’s control flow to valid execution traces, i.e.,
it restricts the targets of control-flow transfer instructions.
This is enforced at runtime by comparing the current
state of the application to a set of pre-computed states.
Control-flow transfers can be divided into forward-edge
and backward-edge transfers [7]. Forward-edge transfers
transfer control flow to a new destination, such as the
target of an (indirect) jump or call. Backward-edge trans-
fers transfer the control flow back to a location that was
previously used in a forward edge, e.g., a return from a
call. Furthermore, CFI can be subdivided into coarse-
grained and fine-grained CFI. In contrast to fine-grained
CFI, coarse-grained CFI allows for a more relaxed control-
flow graph, allowing more targets than necessary [14].

3. Design of Syscall-Flow-Integrity Protec-
tion

3.1. Threat Model

SFIP is applied to a benign userspace application that
potentially contains a vulnerability allowing an attacker
to execute arbitrary code within the application. The
post-exploitation targets the operating system through the
syscall interface to gain kernel privileges. With SFIP, a
syscall is only allowed if the state machine contains a
valid transition from the previous syscall to the current
one and if it originates from a pre-determined location.
If either one is violated, the application is terminated by
the kernel. Similar to prior work [10, 24, 16, 23], our pro-
tection is orthogonal but fully compatible with defenses
such as CFI, ASLR, NX, or canary-based protections.
Therefore, the security it provides to the system remains
even if these other protections have been circumvented.
Side-channel and fault attacks [40, 73, 41, 46, 64, 57] on
the state machine or syscall-origin mapping are out of
scope.

3.2. High-Level Design

In this section, we discuss the high-level design be-
hind SFIP. Our approach is based on three pillars: a di-
graph model for syscall sequences, a per-syscall model of
syscall origin, and the strict enforcement of these models
(cf. Figure 1).

Source Code

L01 : void f oo (int b i t) {
L02 : s y s c a l l (open , . . .) ;
L03 : i f (b i t)
L04 : s y s c a l l (read , . . .) ;
L05 : else
L06 : s y s c a l l (write , . . .) ;
L07 : s y s c a l l (c l o s e , . . .) ;
L08 : }

Pillar I: State Transitions

” Trans i t i on s ” : {
”open” : [read , wr i t e] ,
” read” : [c l o s e] ,
” wr i t e ” : [c l o s e]

}

Pillar II: Origins

”Or ig in s ” : {
”open” : [L02] ,
” read” : [L04] ,
” wr i t e ” : [L06] ,
” c l o s e ” : [L07]

}

Pillar III: Kernel Enforcement

i f (! t r a n s i t i o n p o s s i b l e () | | ! v a l i d o r i g i n ())
terminate app () ;

else
// execu te s y s c a l l

extract

install

1

Figure 1: The three pillars of SFIP on the example of a
function. The first pillar models possible syscall transi-
tions, the second maps syscalls to their origin, and the
third enforces them.

For our first pillar, we rely on the idea of a digraph
model from Wagner and Dean [65]. For our sycall-flow-
integrity protection, we rely on a more efficient construc-
tion and in-memory representation. In contrast to their
approach, we express the set of possible transitions not
as individual k-sequences, but as a global syscall ma-
trix of size N×N, with N being the number of available
syscalls. We refer to the matrix as our syscall state ma-
chine. With this representation, verifying whether a tran-
sition is possible is a simple lookup in the row indicated
by the previous syscall and the column indicated by the
currently executing syscall. Even though the representa-
tion of the sequences differs, the set of valid transitions
remains the same: every transition that is marked as valid
in our syscall state machine must also be a valid transition
if expressed in the way discussed by Wagner and Dean.
Our representation has several advantages though, that
we explore in this paper, namely faster lookups (O(1)),
less memory overhead, and easier construction.

Our syscall state machine can already be used for
coarse-grained SFIP to improve the system’s security (cf.
Section 5.2). However, the second pillar, the validation
of the origin of a specific syscall, further improves the
provided security guarantees by adding additional, en-
forceable information. The basis for this augmentation is
the ability to map syscalls to the location at which they
can be invoked, independent of whether it is a bijective or
non-bijective mapping. We refer to the resulting mapping
as our syscall-origin mapping. For instance, our mapping
might contain the information that the syscall instruction

1 void foo(int bit, int nr) {

2 syscall(open, ...);

3 if(bit)
4 syscall(read, ...);

5 else
6 syscall(nr, ...);

7 bar(...);

8 syscall(close, ...);

9 }

10

Listing 1: Example of a dummy program with multiple
syscall-flow paths.

located at address 0x7ffff7ecbc10 can only execute
the syscalls write and read. Neither unaligned execution
(e.g., in a ROP chain) nor code inserted at runtime is in
our syscall-origin mapping. Thus, syscalls can only be
executed at already existing syscall instructions.

The third pillar is the enforcement of the syscall state
machine and the syscall-origin mapping. Wagner and
Dean [65] proposed their runtime monitoring as a concept
for intrusion detection systems. There is still a domain
expert involved to decide on any further action [39]. In
contrast to monitoring, enforcement cannot afford false
positives as this immediately leads to the termination of
the application in benign scenarios. However, enforce-
ment provides better security than monitoring as immedi-
ate action is undertaken, completely eliminating the time
window for a possible exploit. Thus, by the use case of
SFIP, namely enforcement of syscall-flow integrity, our
concept is more closely related to seccomp but harder to
realize than seccomp-based enforcement of syscalls.

3.3. Challenges

Previous automation work for seccomp filters outlined
several challenges for automatically detecting an appli-
cation’s syscalls [10]. While several works [10, 16, 24]
solve these challenges, none provides the full information
required for SFIP. The challenges of getting this miss-
ing information focus on precise syscall information and
inter- and intra-procedural control-flow transfer informa-
tion. We illustrate the challenges using a simple dummy
program in Listing 1.

C1: Precise Per-Function Syscall Information The
first challenge focuses on precise per-function syscall
information. This challenge must be solved for the
generation of the syscall state machine as well as the
sycall-origin map. For seccomp-based approaches, i.e., k-
sequence of length 1, an automatic approach only needs to
identify the set of syscalls within a function, i.e., the exact
location of the syscalls is irrelevant. This does not hold
for SFIP, which requires precise information at which

location a specific syscall is executed. Thus, we have to
detect that the first syscall instruction always executes
the open syscall, the second executes read, and the third
syscall instruction can execute any syscall that can be
specified via nr. For the state machine generation, the pre-
cise information of syscall locations provides parts of the
information required to correctly generate the sequence of
syscalls. For the syscall-origin map, the precise informa-
tion allows generating the mapping of syscall instructions
to actual syscalls in the case where syscall numbers are
specified as a constant at the time of invocation.

C2: Argument-based Syscall Invocations The second
challenge extends upon C1 as it concerns syscall loca-
tions where the actual syscall executed cannot be easily
determined at the time of compilation. When parsing the
function foo, we can identify the syscall number for all
invocations of the syscall function where the number is
specified as a constant. The exception is the third invoca-
tion, as the number is provided by the caller of the foo

function. As the call to the function, and hence the ac-
tual syscall number, is in a different translation unit than
the actual syscall invocation, the possibility for a non-
bijective mapping exists. Still, an automated approach
must determine all possible syscalls that can be invoked
at each syscall instruction.

C3: Correct Inter- and Intra-Procedural Control-Flow
Graph Precise per-function syscall information on its
own is not sufficient to generate syscall state machines due
to the non-linearity of typical code. Solving C1 and C2
provides the information which syscalls occur at which
syscall location, but does not provide the information on
the execution order. A trivial construction algorithm can
assume that each syscall within a function can follow
each other syscall, but this overapproximation leads to
imprecise state machines. Such an approach accepts a
transition from read to the syscall identified by nr as valid,
even though it cannot occur within our example function.

Therefore, we need to determine the correct inter- and
intra-procedural control-flow transfers in an application.
The correct intra-procedural control-flow graph allows
determining the possible sequences within a function. In
our example, and if function bar does not contain any
syscalls, it provides the information that the sequence of
syscalls open→ read→ close is valid, while open→ nr
→ close (where nr 6= read) is not.

Even in the presence of a correct intra-procedural
control-flow graph, we cannot reconstruct the syscall state
machine of an application as information is missing on
the sequence of syscalls from other called functions. For
instance, if function bar contains at least one syscall, the
sequence of open → read → close is no longer valid.
Hence, we additionally need to recover the precise loca-
tion where control flow is transferred to another function

Source Code

L01 : void f oo (int t e s t) {
L02 : s can f (. . .) ;
L03 : i f (t e s t)
L04 : p r i n t f (. . .)
L05 : else
L06 : s y s c a l l (read , . . .) ;
L07 : int r e t = bar (. . .) ;
L08 : i f (! r e t)
L09 : e x i t (0) ;
L10 : return r e t ;
L11 : }

Extracted Function Info

{
” Trans i t i on s ” : {

”L03” : [L04 , L06] ,
”L04” : [L07] ,
”L06” : [L07]
”L08” : [L09 , L10]

}
”Cal l Targets ” : {

”L02” : [” s can f ”] ,
”L04” : [” p r i n t f ”] ,
”L07” : [”bar”] ,
”L09” : [” e x i t ”] ,

}
” Sy s c a l l s ” : {

”L06” : [read]
}

}

extract

1

Figure 2: A simplified example of the information that is ex-
tracted from a function. Transitions identifies control-flow
transfers between basic blocks, Call Targets the location
of a call to another function and the targets name, Syscalls
the location of the syscall and the corresponding syscall
number.

and the target of this control-flow transfer. By combining
the inter- and intra-procedural control-flow graph, the cor-
rect syscall sequences of an application can be modeled.

Constructing a precise control-flow graph is known to
be a challenging task to solve efficiently [2, 31], espe-
cially in the presence of indirect control-flow transfers.
These algorithms are often cubic in the size of the ap-
plication, which makes them infeasible for large-scale
applications. In the construction of the control-flow graph
and, by extension, the generation of the syscall state ma-
chine and syscall-origin mapping, other factors, such as
aliased and referenced functions, must be considered as
well as functions that are passed as arguments to other
functions, e.g., the entry function for a new thread created
with pthread_create. Any form of imprecision can
lead to the termination of the application by the runtime
enforcement.

4. Implementation
In this section, we discuss our proof-of-concept imple-
mentation SysFlow and how we systematically solve
the challenges outlined in Section 3.3 to provide fully-
automated SFIP.

SysFlow SysFlow automatically generates the state ma-
chine and the syscall-origin mapping while compiling an
application. As the basis of SysFlow we considered the
works by Ghavamnia et al. [24] and Canella et al. [10].

4.1. State-Machine Extraction

In SysFlow, the linker is responsible for creating the final
state machine. The construction works as follows: The
linker starts at the main function, i.e., the user-defined
entry point of an application, and recursively follows the
ordered set of control-flow transfers. Upon encountering a
syscall location, the linker adds a transition from the previ-

ous syscall(s) to the newly encountered syscall. If control
flow continues at a different function, the set of last valid
syscall states is passed to the recursive visit of the en-
countered function. Upon returning from a recursive visit,
the linker updates the set of last valid syscall states and
continues processing the function. During the recursive
processing, it also considers aliased and referenced func-
tions. A special case, and source of overapproximation,
are indirect calls, which we address with appropriate tech-
niques from previous works [10, 16, 23]. The resulting
syscall state machine and our support libarary are embed-
ded in the static binary. We discuss the support library in
more detail in Section 4.3.

Building the state machine requires that precise infor-
mation of the syscalls a function executes (C1) and a
control-flow graph of the application (C3) is available
to the linker. Both the front- and backend are involved
in collecting this information. The frontend extracts the
information from the LLVM IR generated from C source
code, while the backend extracts the information from
assembly files. Figure 2 illustrates the information that is
extracted from a function.

Extracting Precise Syscall Information In the fron-
tend, we iterate over every IR instruction of a function and
determine the used syscalls. In the backend, we iterate
over every assembly instruction to extract the syscalls.
Extracting the information in the front- and backend suc-
cessfully solves C1.

Extracting Precise Control-Flow Information Recov-
ering the control-flow graph (C3) in the frontend requires
two different sources of information: IR call instructions
and successors of basic blocks. The former allows track-
ing inter-procedural control-flow transfers while the lat-
ter allows tracking intra-procedural transfers. For inter-
procedural transfers, we iterate over every IR instruction
and determine whether it is a call to an external function.
For direct calls, we store the target of the call; for indirect
calls, we store the function signature of the target function.
In addition, we also gather information on referenced and
aliased functions, as well as functions that are passed as
arguments to other functions. For the intra-procedural
transfers, we track the successors of each basic block.
In the backend, we perform similar steps, although on
a platform-specific assembly level. Extracting this in-
formation in the front- and backend successfully solves
C3.

4.2. Syscall-Origin Extraction

In SysFlow, the linker also generates the final syscall-
origin mapping. The mapping maps all reachable syscalls
to the locations where they can occur. We extract the
information as an offset instead of an absolute position to
facilitate compatibility with ASLR. The linker requires

precise information of syscalls, i.e., their offset relative
to the start of the encapsulating function, and a precise
call graph of the application. Both the front- and backend
are responsible for providing this information. Figure 3
illustrates the extraction. From the frontend, the syscall
information generated by the state machine extraction
is re-used (C1). A challenge is the possibility of non-
bijective syscall mappings (C2).

Non-Bijective Syscall Mappings If the syscall number
cannot be determined at the location of a syscall instruc-
tion, a non-bijective mapping exists for the instruction,
i.e., multiple syscalls can be executed through it. An ex-
ample of such a case is shown in Listing 1. In such cases,
the backend itself cannot create a mapping of a syscall
to the syscall instruction. Hence, it must propagate the
syscall number and the syscall offset from their respective
translation unit to the linker, which can then merge it,
solving C2.

4.3. Installation

For each syscall, the binary contains a list of all other
reachable syscalls as an N×N matrix, i.e., the state ma-
chine, with N being the number of syscalls available.
Valid transitions are indicated by a 1 in the matrix, invalid
ones with a 0 to allow fast checks and constant memory
overhead. If a function contains a syscall, the offset of the
syscall is added to the load address of the function. The
state machine and the syscall-origin mapping are sent to
the kernel and installed.

4.4. Kernel Enforcement

In this section, we discuss the third and final pillar of
SFIP: enforcement of the syscall flow and origin where
every violation leads to immediate process termination.

Our Linux kernel is based on version 5.13 configured
for Ubuntu 21.04 with the following modifications.

First, a new syscall, SYS_syscall_sequence, which takes
as arguments the state machine, the syscall-origin map-
ping, and a flag that identifies the requested mode, i.e.,
is state-machine enforcement requested, syscall-origin
enforcement, or both. The kernel rejects updates to al-
ready installed syscall-flow information. Consequently,
an unprivileged process cannot apply a malicious state
machine or syscall origins before invoking a setuid binary
or other privileged programs using the exec syscall [17].

Second, our syscall-flow-integrity checks are executed
before every syscall. We create a new syscall_work_bit
entry, which determines whether or not the kernel uses
the slow syscall entry path, like in seccomp, to ensure that
our checks are executed. Upon installation, we set the
respective bit in the syscall_work flag in the thread_info
struct of the requesting task.

Translation Unit 1

L01 : void func () {
.func:39:

L02 : asm(” s y s c a l l ” : : ”a” (3 9)) ;
. . .
.syscall cp:3:

L08 : s y s c a l l c p (c l o s e , 0) ;
L09 : }

Translation Unit 2

L01 : s y s c a l l c p :
. . .

L06 : mov %rcx ,% r s i
L07 : mov 8(%rsp) ,% r8

.syscall cp:-1:
L08 : s y s c a l l

. . .

Extraction TU 1

” O f f s e t s ” : {
” func ” : {

”39” : [L02]
}

}
”Unknown O f f s e t s ” : {

” s y s c a l l c p ” : [3]
}

Extraction TU 2

”Unknown Sy s c a l l s ” : {
” s y s c a l l c p ” : [L08]

}

Linker

” O f f s e t s ” : {
” func ” : {

”39” : [L02]
} ,
” s y s c a l l c p ” : {

”3” : [L08]
}

}

extract

merge

1

Figure 3: A simplified example of the syscall-origin extraction. Inserted red labels mark the location of a syscall and
encode available information. The extraction deconstructs the label and calculates the offset using the label’s address
from the symbol table. The linker combines the information from each translation unit and generates the final syscall-
origin mapping.

Third, the syscall-flow information has to be stored
and cleaned up properly. As it is never modified after
installation, it can be shared between the parent and child
processes and threads. Upon task cleanup, we decrease
the reference counter, and if it reaches 0, we free the re-
spective memory. The current state, i.e., the previously
executed syscall, is not shared between threads or pro-
cesses and is thus part of every thread.

Enforcing State Machine Transitions Each thread and
process tracks its own current state in the state machine.
As we enforce sequence lengths of size 2, storing the pre-
viously executed syscall as the current state is sufficient
for the enforcement. Due to the design of our state ma-
chine, verifying whether a syscall is allowed is a single
lookup in the matrix at the location indicated by the pre-
vious and current syscall. If the entry indicates a valid
transition, we update our current state to the currently
executing syscall and continue with the syscall execution.
Otherwise, the kernel immediately terminates the offend-
ing application. The simple state machine lookup, with a
complexity of O(1), ensures that only a small overhead
is introduced to the syscall (cf. Sections 5.1.2 and 5.1.3).

Enforcing Syscall Origins The enforcement of the
syscall origins is very efficient due to its design. Our
modified kernel uses the current syscall to retrieve the set
of possible locations from the mapping to check whether
the current RIP, minus the size of the syscall instruction
itself, is a part of the retrieved set. If not, the application
requested the syscall from an unknown location, which
results in the kernel immediately terminating it. By de-

sign, the complexity of this lookup is O(N), with N being
the number of valid offsets for that syscall. We evaluate
typical values of N in Section 5.2.6.

5. Evaluation

In this section, we evaluate the general idea of SFIP and
our proof-of-concept implementation SysFlow. In the
evaluation, we focus on the performance and security of
the syscall state machines and syscall-origins individually
and combined. We evaluate the overhead introduced on
syscall executions in both a micro- and macrobenchmark.
We also evaluate the time required to extract the required
information from a selection of real-world applications.

Our second focus is the security provided by SFIP.
We first consider the protection SFIP provides against
control-flow hijacking attacks. We evaluate the security
of pure syscall-flow protection, pure syscall-origin pro-
tection, and combined protection. We discuss mimicry
attacks and how SFIP makes such attacks harder. We
also consider the security of the stored information in the
kernel and discuss the possibility of an attacker manipu-
lating it. Finally, we extract the state machines and syscall
origins from several real-world applications and analyze
them. We evaluate several security-relevant metrics such
as the number of states in the state machine, average
possible transitions per state, and the average number of
allowed syscalls per syscall location.

State Origin Combined None Seccomp
0

200

400
32

6
32

9 34
1

30
2 34

8
32

0
32

0 33
2

29
2 33

6

C
yc

le
s

average min

Figure 4: Microbenchmark of the getppid syscall over
100 million executions. We evaluate SFIP with only state
machine, only syscall origin, both, and no enforcement
active. For comparison, we also benchmark the overhead
of seccomp.

5.1. Performance

5.1.1. Setup All performance evaluations are performed
on an i7-4790K running Ubuntu 21.04 and our modified
Linux 5.13 kernel. For all evaluations, we ensure a stable
frequency.
5.1.2. Microbenchmark We perform a microbench-
mark to determine the overhead our protection introduces
on syscall executions. Our benchmark evaluates the la-
tency of the getppid syscall, a syscall without side ef-
fects that is also used by kernel developers and previous
works [6, 10, 33]. SysFlow first extracts the state ma-
chine and the syscall-origin information from our bench-
mark program, which we then execute once for every
mode of SFIP, i.e., state machine, syscall origins, and
combined. Each execution measures the latency of 100
million syscall invocations. For comparison, we also
benchmark the execution with no active protection. As
with seccomp, syscalls performed while our protection is
active require the slow syscall enter path to be taken. As
the slow path introduces part of the overhead, we addi-
tionally measure the performance of seccomp in the same
experiment setup.

Results Figure 4 shows the results of the microbench-
mark. Our results indicate a low overhead for the syscall
execution for all SFIP modes. Transition checks show an
overhead of 8.15 %, syscall origin 9.13 %, and combined
13.1 %. Seccomp introduces an overhead of 15.23 %. The
improved seccomp has a complexity of O(1) for simple
allow/deny filters [12], the same as our state machine.
The syscall-origin check has a complexity of O(N), with
typically small numbers for N, i.e., N = 1 for the getppid
syscall in the microbenchmark. Section 5.2.6 provides a
more thorough evaluation of N in real-world applications.
The additional overhead in seccomp is due to its filters
being written in cBPF and converted to and executed as
eBPF.
5.1.3. Macrobenchmark To demonstrate that SFIP
can be applied to large-scale, real-world applications

Table 1: The results of our extraction time evaluation in
real world applications. We present both the compilation
time of the respective application with and without our
extraction active.

Application Unmodified
Average / SEM

Modified
Average / SEM

ffmpeg 162.12 s / 0.78 1783.15 s / 10.61

mupdf 58.01 s / 0.71 489.85 s / 0.68

nginx 8.22 s / 0.03 226.64 s / 1.67

busybox 16.09 s / 0.08 81.33 s / 0.14

coreutils 5.50 s / 0.02 14.39 s / 0.41

memcached 2.90 s / 0.03 4.59 s / 0.01

pwgen 0.07 s / 0.00 0.12 s / 0.00

with a minimal performance overhead, we perform a
macrobenchmark using applications used in previous
work [10, 24, 60]. We measure the performance over 100
executions with only state machine, only syscall origin,
both, and no enforcement active. For nginx, we measure
the time it takes to process 100 000 requests. For ffmpeg,
we convert a video (21 MB) from one file format to an-
other. With pwgen, we generate a set of passwords while
coreutils and memcached are benchmarked using their
respective testsuites. In all cases, we verified that syscalls
are being executed, e.g., each request for nginx executes
at least 13 syscalls.

Results Figure 5 shows the results of the macrobench-
mark. In nginx, we observe a small increase in execution
time when any mode of SFIP is active. If both checks are
performed, the average increase from 24.96 s to 25.34 s
(+1.52 %) is negligible. We observe similar overheads
in the ffmpeg benchmark. For the combined checks, we
only observe an increase from 9.41 s to 9.58 s (+1.52 %).
pwgen and coreutils show the highest overhead. pwgen
is a small application that performs its task in under a
second; hence any increase appears large. The absolute
change in runtime is an increase of 0.05 s. For the core-
utils benchmark, we execute the testsuite that involves all
103 utilities. Each utility requires that the SFIP informa-
tion is copied to the kernel, which introduces a majority
of the overhead. As the long-running applications show,
the actual runtime overhead is less than 1.8 %. Our results
demonstrate that SFIP is a feasible concept for modern,
large-scale applications.
5.1.4. Extraction-Time Benchmark We evaluate the
time it takes to extract the information required for the
state machine and syscall origins. As targets, we use
several real-world applications (cf. Table 1) used in previ-
ous works on automated seccomp sandboxing [10, 24, 16].
These range from smaller utility applications such as busy-

ffmpeg nginx pwgen coreutils memcached
0

0.5

1

1.5

+3
.9

3
%

+1
.0

8
%

+1
3.

33
%

+6
.5

%

+0
.5

%

+2
.9

8
%

+1
.2

%

+1
3.

33
%

+9
.8

3
%

+0
.3

4
%

+1
.8

1
%

+1
.5

2
%

+2
0

%

+1
2.

42
%

+1
.0

6
%

+0
%

+0
%

+0
%

+0
%

+0
%

N
or

m
al

iz
ed

O
ve

rh
ea

d

State Sysloc Combined None

Figure 5: We perform a macrobenchmark using 5 real-world applications. For nginx, we measure the time it takes
to handle 100 000 requests using ab. For ffmpeg, we convert a video (21 MB) from one file format to another. pwgen
generates a set of passwords while coreutils and memcached are benchmarked using their respective testsuites. Each
benchmark measures the average execution time over 100 repetitions of each mode of SFIP.

box and coreutils to applications with a larger and more
complex codebase such as ffmpeg, mupdf, and nginx. For
the benchmark, we compile each application 10 times us-
ing our modified compiler with and without our extraction
active.

Results Table 1 shows the result of the extraction-time
benchmark. We present the average compilation time
and the standard error for compiling each application 10
times. The results indicate that the extraction introduces
a significant overhead. For instance, for the coreutils ap-
plications, we observe an increase in compilation time
from approximately 6 s to 15 s. We observe the largest
increase in nginx from approximately 8 s to 227 s. Most
of the overhead is in the linker, while the extraction in
the frontend and backend is fast. We expect that a full
implementation can significantly improve upon the ex-
traction time by employing more efficient caching and by
potentially applying other construction algorithms.

Similar to previous work [24], we consider the increase
in compilation time not to be prohibitive as it is a one-
time cost. Hence, the security improvement outweighs
the increase in compilation time.

5.2. Security

In this section, we evaluate the security provided by SFIP.
We discuss the theoretical security benefit of each mode of
SFIP in the context of control-flow-hijacking attacks. We
then evaluate a real vulnerability in BusyBox version 1.4.0
and later2. We also consider mimicry attacks [65, 66] and

2https://ssd-disclosure.com/ssd-advisory-busybox-

local-cmdline-stack-buffer-overwrite/

perform an analysis of real-world state machines and
syscall origins.
5.2.1. Syscall-Flow Integrity in the Context of Con-
trol-flow Hijacking In the threat model of SFIP (cf. Sec-
tion 3.1), an attacker has control over the program-counter
value of an unprivileged application. In such a situation,
an attacker can either inject code, so-called shellcode,
that is then executed, or reuse existing code in a so-called
code-reuse attack. In a shellcode attack, an attacker man-
ages to inject their own custom code. With control over
the program-counter value, an attacker can redirect the
control flow to the injected code. On modern systems,
these types of attacks are by now harder to execute due to
data execution prevention [62, 49], i.e., data is no longer
executable. As a result, an attacker must first make the
injected code executable, which requires syscalls, e.g.,
the mprotect syscall. For this, an attacker has to rely on
existing code (gadgets) in the exploited application to ex-
ecute such a syscall. An attacker might be lucky, and the
correct parameters are already present in the respective
registers, resulting in a straightforward code-reuse attack
commonly known as ret2libc [51]. Realistically, however,
an attacker first has to get the location and size of the shell-
code area into the corresponding registers using existing
code gadgets. Depending on the type of gadgets, such
attacks are known as return-oriented-programming [59]
or jump-oriented-programming attacks [5].

On an unprotected system, every application can exe-
cute the mprotect syscall. Depending on the application,
the mprotect syscall cannot be blocked by seccomp if
the respective application requires it. With SFIP, attacks
that rely on mprotect can potentially be prevented even

if the application requires the syscall. First, we consider
a system where only the state machine is verified on ev-
ery syscall execution. mprotect is mainly used in the
initialization phase of an application [24, 10]. Hence, we
expect very few other syscalls to have a transition to it, if
any. This leaves a tiny window for an attacker to execute
the syscall to make the shellcode executable, i.e., it is
unlikely that the attempt succeeds in the presence of state-
machine SFIP. Still, with only state-machine checks, the
syscall can originate from any syscall instruction within
the application.

Contrary, if only the syscall origin is enforced, the
mprotect syscall is only allowed at certain syscall instruc-
tions. Hence, an attacker needs to construct a ROP chain
that sets up the necessary registers for the syscall and then
returns to such a location. In most cases, the only instance
where mprotect is allowed is within the libc mprotect

function. If executed from there, the syscall succeeds. If
the syscall originates from another location, the check
fails, and the application is terminated. Still, with only
syscall origins being enforced, the previous syscall is not
considered, allowing an attacker to perform the attack at
any point in time.

With both active, i.e., full SFIP, several restrictions are
applied to a potential attack. The attacker must construct
a ROP chain that either starts after a syscall with a valid
transition to mprotect was executed, or the ROP chain
must contain a valid sequence of syscalls that lead to
such a state, i.e., a mimicry attack (cf. Section 5.2.3).
Additionally, all syscalls must originate from a location
where they can legally occur. These additional constraints
significantly increase the security of the system.
5.2.2. Real-world Exploit For a real-world application,
we evaluate a stack-based buffer overflow in the BusyBox
arp applet from version 1.4.0 to version 1.23.1. In line
with our threat model, we assume that all software-based
security mechanisms, such as ASLR and stack protector,
have already been circumvented. The vulnerable code
is in the arp_getdevhw function, which copies a user-
provided command-line parameter to a stack-allocated
structure using strcpy. By providing a device name
longer than IFNAMSIZ (default 16 characters), this over-
flow overwrites the stack content, including the stored
program counter.

The simplest exploit we found is to mount a return2libc
attack using a one gadget RCE, i.e., a gadget that directly
spawns a shell. In libc version 2.23, we discovered such a
gadget at offset 0xf0897, with the only requirement that
offset 0x70 on the stack is zero, which is luckily the case.
Hence, by overwriting the stored program counter with
that offset, we can successfully replace the application
with an interactive shell. With SFIP, this exploit is pre-
vented. Running the exploit executes the socket syscall
right before the execve syscall that opens the shell. While

the execve syscall is at the correct location, the state ma-
chine does not allow a transition from the socket to the
execve syscall. Hence, exploits that directly open a shell
are prevented. We also verified that there is no possible
transition from socket to mprotect,; hence loaded shell-
code cannot be marked as executable. There are only 21
syscalls after a socket syscall allowed by the state machine.
Especially as neither the mprotect nor the execve syscall
are available, possible exploits are drastically reduced.
To circumvent the protection, an attacker would need to
find gadgets allowing a valid transition chain from the
socket to the execve (or mprotect) syscall. We also note
that the buffer overflow itself is also a limiting factor. As
the overflow is caused by a strcpy function, the exploit
payload, i.e., the ROP chain, cannot contain any null byte.
Thus, given that user-space addresses on 64-bit systems
always have the 2 most-significant address bits set to 0, a
longer chain is extremely difficult to craft.
5.2.3. Syscall-Flow-Integrity Protection and Mimicry
Attacks We consider the possibility of mimicry at-
tacks [65, 66] where an attacker tries to circumvent a
detection system by evading the policy. For instance, if an
intrusion detection system is trained to detect a specific
sequence of syscalls as malicious, an attacker can add
arbitrary, for the attack unneeded, syscalls that hide the
actual attack. With SFIP, such attacks become signifi-
cantly more complicated. An attacker needs to identify
the last executed syscall and knowledge of the valid tran-
sitions for all syscalls. With this knowledge, the attacker
needs to perform a sequence of syscalls that forces the
state machine into a state where the malicious syscall
is a valid transition. Additionally, as syscall origins are
enforced, the attacker has to do this in a ROP attack and
is limited to syscall locations where the specific syscalls
are valid. While this does not make mimicry attacks im-
possible, it adds several constraints that make the attack
significantly harder.
5.2.4. Security of Syscall-Flow Information in the Ker-
nel The security of the syscall-flow information stored in
the kernel is crucial for effective enforcement. Once the
application has sent the information to the kernel for en-
forcement, it is the responsibility of the kernel to prevent
malicious changes to the information. The case where
the initial information sent to the kernel is malicious is
outside of the threat model (cf. Section 3.1).

The kernel stores the information in kernel memory;
hence direct access and manipulation is not possible. The
only way to modify the information is through our new
syscall. Our implementation currently does not allow for
any changes to the installed information, i.e., no updates
are allowed. An attacker using our syscall and a ROP
attack to manipulate the information is also not possible
as the syscall itself needs to pass SFIP checks before being
executed. As the application contains no valid transition

nor location for the syscall, the kernel terminates the
application.

Still, as allowing no updates is a design decision, an-
other implementation might consider allowing updates. In
this case, the application needs to perform our new syscall
to update the filters. Before our syscall is executed, SFIP
is applied to the syscall, i.e., it is verified whether there
is a valid transition to it and whether it originates at the
correct location. If not, the kernel terminates the appli-
cation; otherwise, the update is applied. In this case, if
timed correctly, an attacker is able to maliciously modify
the stored information.
5.2.5. State Machine Reachability Anaysis We anal-
yse the state machine of several real-world applications
in more detail. We define a state in our state machine
as a syscall with at least one outgoing transition. While
Wagner and Dean [65] only provide information on the
average branching factor, i.e., the number of average
transitions per state, we extend upon this to provide addi-
tional insights into automatically generated syscall state
machines. We focus on several key factors: the overall
number of states in the application and the minimum,
maximum, and average number of transitions across these
states. These are key factors that determine the effective-
ness of SFIP. We do not consider additional protection
provided by enforcing syscall origins. We again rely on
real-world applications that have been used in previous
work [10, 16, 24, 60]. For busybox and coreutils, we
do not provide the data for every utility individually, but
instead present the average of all contained utilities, i.e.,
398 and 103, respectively. To determine the improvement
in security, we consider an unprotected version of the
respective application, i.e., every syscall can follow the
previously executed syscall. Additionally, we compare
our results to a seccomp-based version.

Results Table 2 shows the results of this evaluation. ng-
inx shows the highest number of states with 108, followed
by memcached, mutool, and ffmpeg with 87, 61, and 56
states, respectively. coreutils and busybox also provide
multiple functionalities but split across various utilities.
Hence, their number of states is comparatively low.

Interestingly, each application has at least one state
with only one valid transition. We manually verified this
transition, and in every case, it is a transition from the
exit_group syscall to the exit syscall, which is indeed the
only valid transition for this syscall.

The combination of the average and maximum number
of transitions together with the number of states provides
some interesting insight. We observe that in most cases,
the number of average transitions is relatively close to
the maximum number of transitions, while the difference
to the number of states can be larger. This indicates
that our state machine is heavily interconnected. Mod-
ern applications delegate many tasks via syscalls to the

kernel, such as allocating memory, sending data over the
network, or writing to a file. As syscalls can fail, they
are often followed by error checking code that performs
application-specific error handling, logs the error, or ter-
minates the application. Hence, a potential transition to
these syscalls is automatically detected, leading to larger
state machines. Another source is locking, as the involved
syscalls can be preceded and followed by a wide variety
of other syscalls. Additionally, the overapproximation of
indirect calls also increases the number of transitions.

Even with such interconnected state machines, the secu-
rity improvement is still large compared to an unprotected
version of the application or even a seccomp-based ver-
sion. In the case of an unprotected version, all syscalls are
valid successors to a previously executed syscall. An un-
modified Linux kernel 5.13 provides 357 syscalls. Com-
pared to nginx, which has the highest number of average
transitions with 66, this is an increase of factor 5.4 in
terms of available transitions. In our state machine, the
number of states corresponds to the number of syscalls
an automated approach needs to allow for seccomp-based
protection. These numbers also match the numbers pro-
vided in previous work on automated seccomp filter gen-
eration. For instance, Canella et al. [10] reported 105
syscalls in nginx and 63 in ffmpeg. Ghavamnia et al. [24]
reported 104 in nginx. Each such syscall can follow any
of the other syscalls that are part of the set. In the case of
nginx, this is around factor 1.6 more than in the average
state when SFIP is applied. Hence, we conclude that even
coarse-grained SFIP can drastically increase the system’s
security.
5.2.6. Syscall Origins Analysis We perform a similar
analysis for our syscall origins in real-world applications.
We focus on analyzing the number of syscall locations
per application and for each such location, the number
of syscalls that can be executed. Special focus is put
on the number of syscalls that can be invoked through
the syscall wrapper functions as they can allow a wide
variety of syscalls. Hence, the fewer syscalls are available
through these functions, the better the security of the
system.

Results We show the results of this evaluation in Table 3.
The average number of offsets per syscall indicates that
many syscalls are available at multiple locations. This
is most likely due to the inlining of the syscall. This
number is largely driven by the futex syscall, as locking is
required in many places of applications. Error handling is
a less driving factor in this case as these are predominantly
printed using dedicated, non-inlined functions.

The last two columns analyze the number of syscalls
that can be invoked by the respective syscall wrapper func-
tion and demonstrate a non-bijective mapping of syscalls
to syscall locations. Relatively few syscalls are available
through the syscall() function as it can be more easily

Table 2: We evaluate various properties of applications state machines, including the average number of transitions per
state, number of states in the state machine, min and max transitions. Busybox and coreutils show the averages over all
contained utilites (398 and 103 utilities, respectively).

Application Average Transitions #States Min Transitions Max Transitions
busybox 15.73 24.51 1.0 21.09

pwgen 12.42 19 1 16

muraster 17.51 41 1 33

nginx 65.55 108 1 80

coreutils 15.75 27.11 1.0 23.0

ffmpeg 48.48 56 1 51

memcached 40.6 87 1 71

mutool 32.0 61 1 46

Table 3: We evaluate various metrics for our syscall location enforcement, including the total number of functions
containing syscalls, min, max and average number of syscalls per function, total syscall offsets found, average offsets
per syscall, and the number of syscalls in the used musl syscall wrapper functions. Busybox and coreutils show the
averages over all contained utilites (398 and 103 utilities, respectively).

Applic
ati

on

#F
uncti

on
s

M
in

Sysc
all

s

M
ax

Sysc
all

s

Avg
. Sysc

all
s

per
Functi

on

Tota
l #

Offs
ets

Avg
#O

ffs
ets

#sy
sca

ll()

#sy
sca

ll_
cp

()

#sy
sca

ll_
cp

_a
sm

()

busybox 30.57 1.0 9.83 1.48 102.64 3.75 1.71 9.79 0

pwgen 28 1 3 1.25 84 4.42 0 2 0

muraster 55 1 12 1.62 193 4.6 0 4 0

nginx 105 1 24 1.53 318 3.0 7 24 0

coreutils 36.86 1.0 4.21 1.38 116.71 4.42 1.0 3.41 0

ffmpeg 89 1 13 1.55 279 4.98 0 13 13

memcached 101 1 20 1.5 317 3.69 0 20 0

mutool 81 1 14 1.67 278 4.15 6 14 0

inlined, i.e., it is almost always inlined within libc itself.
On the other hand, syscall_cp() cannot be inlined as
it is a wrapper around an aliased function that performs
the actual syscall.

Our results also indicate that, on average, every func-
tion that contains a syscall contains more than one syscall.
nginx contains the most functions with a syscall and the
highest number of total syscall offsets. Without syscall-
origin enforcement, an attacker can choose from 318
syscall locations to execute any of the 357 syscalls pro-
vided by Linux 5.13 during a ROP attack. With our en-
forcement, the number is drastically reduced as each one
of these locations can, on average, perform only 3 syscalls
instead of 357.

6. Discussion

Limitations and Future Work Our proof-of-concept
implementation currently does not handle signals and

syscalls invoked in a signal handler. However, this is not
a conceptual limitation. The compiler can identify all
functions that serve as a signal handler and the functions
that are reachable through it. Hence, it can extract a per-
signal state machine to which the kernel switches when
it sets up the signal stack frame. This allows for small
per-signal state machines, which further improve security.
As this requires significant engineering work, we leave
the implementation and evaluation for future work.

Our state-machine construction leads to coarse-grained
state machines, which can be improved by the fact that
we can statically identify syscall origins. Future work
can intertwine this information on a deeper level with
the generated state machine. By doing so, a transition to
another state is then not only dependent on the previous
and the current syscall number but also on the virtual ad-
dress of the previous and current syscall instruction. This
allows to better represent the syscall-flow graph of the

application without relying on context-sensitivity or call
stack information [65, 28, 58]. As this requires significant
changes to the compiler and the enforcement in the kernel
and thorough evaluation, we leave this for future work.

Recent work has proposed hardware support for sec-
comp [60]. In future work, we intend to investigate
whether similar approaches are possible to improve the
performance of SFIP.

Related Work In 2001, the seminal work by Wagner
and Dean [65] introduced automatically-generated syscall
NDFAs, NDPDAs, and digraphs for sequence checks in
intrusion detection systems. SFIP builds upon digraphs
but modifies their construction and representation to in-
crease performance. We further extend upon their work by
additionally verifying the origin of a syscall. The accuracy
and performance of SFIP allows real-time enforcement in
large-scale applications.

Several papers have focused on extracting and mod-
eling an applications control flow based on the work by
Forrest et al. [19]. Frequently, such approaches rely on dy-
namic analysis [21, 25, 32, 34, 44, 68, 47, 63, 69]. Other
approaches rely on machine-learning techniques to learn
syscall sequences or detect intrusions [74, 53, 48, 8, 67,
26]. Giffin et al. [27] proposed incorporating environ-
ment information in the static analysis to generate more
precise models. The Dyck model [28] is a prominent
approach for learning syscall sequences that rely on stack
information and context-sensitive models. Other works
disregard control flow and focus instead on detecting in-
trusions based on syscall arguments [42, 50]. Forrest et al.
[20] provide an analysis on the evolution of system-call
monitoring. Our work differs as we do not require stack
information, context-sensitive models, dynamic tracing
of an application, or code instrumentation. The only addi-
tional information we consider is the mapping of syscalls
to syscall instructions.

Recent work has investigated the possibility of automat-
ically generating seccomp filters from source or existing
binaries [16, 10, 24, 23, 52]. SysFlow can be extended to
generate the required information from binaries as well.
More recent work proposed a faster alternative to sec-
comp while also enabling complex argument checks [9].
In contrast to these works, we consider syscall sequences
and origins, which requires additional challenges to be
solved (cf. Section 3.3).

A similar approach to our syscall-origin enforcement
has been proposed by Linn et al. [45] and de Raadt [15].
The former extracts the syscall locations and numbers
from a binary and enforces them on the kernel level but
fails in the presence of ASLR. The latter restricts the
execution of syscalls to entire regions, but not precise
locations, i.e., the entire text segment of a static binary
is a valid origin. Additionally, in the entire region, any
syscall is valid at any syscall location. Our work improves

upon them in several ways as we (1) present a way to
enforce syscall origins in the presence of ASLR, (2) limit
the execution of specific syscalls to precise locations,
(3) combine syscall origins with state machines which
lead to a significant increase in security.

7. Conclusion
In this paper, we introduced the concept of syscall-flow-
integrity protection (SFIP), complementing the concept
of CFI with integrity for user-kernel transitions. In our
evaluation, we showed that SFIP can be applied to large-
scale applications with minimal slowdowns. In a micro-
and a macrobenchmark, we observed an overhead of only
13.1 % and 7.4 %, respectively. In terms of security, we
discussed and demonstrated its effectiveness in preventing
control-flow-hijacking attacks in real-world applications.
Finally, to highlight the reduction in attack surface, we
performed an analysis of the state machines and syscall-
origin mappings of several real-world applications. On
average, we showed that SFIP decreases the number of
possible transitions by 41.5 % compared to seccomp and
91.3 % when no protection is applied.

References
[1] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti.

Control-Flow Integrity. In CCS, 2005.
[2] Lars Ole Andersen. Program Analysis and Specialization for the

C Programming Language. PhD thesis, 1994.
[3] Android. Application Sandbox, 2021.
[4] AppArmor. AppArmor: Linux kernel security module, 2021.
[5] Tyler K. Bletsch, Xuxian Jiang, Vincent W. Freeh, and Zhenkai

Liang. Jump-oriented programming: a new class of code-reuse
attack. In AsiaCCS, 2011.

[6] Davidlohr Bueso. tools/perf-bench: Add basic syscall benchmark,
2019.

[7] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael
Franz, Stefan Brunthaler, and Mathias Payer. Control-Flow In-
tegrity: Precision, Security, and Performance. ACM Computing
Surveys, 2017.

[8] Jeffrey Byrnes, Thomas Hoang, Nihal Nitin Mehta, and Yuan
Cheng. A Modern Implementation of System Call Sequence
Based Host-based Intrusion Detection Systems. In TPS-ISA,
2020.

[9] Claudio Canella, Andreas Kogler, Lukas Giner, Daniel
Gruss, and Michael Schwarz. Domain Page-Table Isolation.
arXiv:2111.10876, 2021.

[10] Claudio Canella, Mario Werner, Daniel Gruss, and Michael
Schwarz. Automating Seccomp Filter Generation for Linux
Applications. In CCSW, 2021.

[11] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-
Reza Sadeghi, Hovav Shacham, and Marcel Winandy. Return-
oriented programming without returns. In CCS, 2010.

[12] Jonathan Corbet. Constant-action bitmaps for seccomp(), 2020.
[13] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat

Bakke, Steve Beattie, Aaron Grier, Perry Wagle, Qian Zhang,
and Heather Hinton. Stackguard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In USENIX Security,
1998.

[14] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian
Monrose. Stitching the gadgets: On the ineffectiveness of coarse-
grained control-flow integrity protection. In USENIX Security
Symposium, August 2014.

[15] Theo de Raadt. syscall call-from verification, 2019.
[16] Nicholas DeMarinis, Kent Williams-King, Di Jin, Rodrigo Fon-

seca, and Vasileios P. Kemerlis. sysfilter: Automated System
Call Filtering for Commodity Software. In RAID, 2020.

[17] Jake Edge. System call filtering and no_new_privs, 2012.
[18] Jake Edge. A seccomp overview, 2015.
[19] S. Forrest, S.A. Hofmeyr, A. Somayaji, and T.A. Longstaff. A

sense of self for Unix processes. In S&P, 1996.
[20] Stephanie Forrest, Steven Hofmeyr, and Anil Somayaji. The

Evolution of System-Call Monitoring. In ACSAC, 2008.
[21] Thomas D. Garvey and Teresa F. Lunt. Model-based intrusion

detection. In NCSC, 1991.
[22] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger.

Fine-Grained Control-Flow Integrity for Kernel Software. In
Euro S&P, 2016.

[23] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and
Michalis Polychronakis. Confine: Automated System Call Policy
Generation for Container Attack Surface Reduction. In RAID,
2020.

[24] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and
Michalis Polychronakis. Temporal System Call Specialization
for Attack Surface Reduction. In USENIX Security Symposium,
2020.

[25] Anup Ghosh, Aaron Schwartzbard, and Michael Schatz. Learning
Program Behavior Profiles for Intrusion Detection. In ID, 1999.

[26] Anup K. Ghosh and Aaron Schwartzbard. A Study in Using
Neural Networks for Anomaly and Misuse Detection. In USENIX
Security Symposium, 1999.

[27] Jonathon Giffin, David Dagon, Somesh Jha, Wenke Lee, and
Barton Miller. Environment-Sensitive Intrusion Detection. In
RAID, 2005.

[28] Jonathon T Giffin, Somesh Jha, and Barton P Miller. Efficient
Context-Sensitive Intrusion Detection. In NDSS, 2004.

[29] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios
Portokalidis. Out of control: Overcoming control-flow integrity.
In S&P, 2014.

[30] Google. Seccomp filter in Android O, 2017.
[31] Michael Hind. Pointer analysis: Haven’t we solved this problem

yet? In PASTE, 2001.
[32] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. In-

trusion Detection Using Sequences of System Calls. J. Comput.
Secur., 1998.

[33] Tom Hromatka. seccomp and libseccomp performance improve-
ments, 2018.

[34] K. Ilgun, R.A. Kemmerer, and P.A. Porras. State transition
analysis: a rule-based intrusion detection approach. TSE, 1995.

[35] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Math-
ias Payer. Block Oriented Programming: Automating Data-Only
Attacks. In CCS, 2018.

[36] Vasileios Kemerlis. Protecting Commodity Operating Systems
through Strong Kernel Isolation. PhD thesis, Columbia Univer-
sity, 2015.

[37] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D
Keromytis. ret2dir: Rethinking kernel isolation. In USENIX
Security Symposium, 2014.

[38] Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D.
Keromytis. kguard: Lightweight kernel protection against return-
to-user attacks. In USENIX Security Symposium, 2012.

[39] Richard A Kemmerer and Giovanni Vigna. Intrusion detection: a
brief history and overview. Computer, 2002.

[40] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye
Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur
Mutlu. Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors. In ISCA,
2014.

[41] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Man-
gard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
Spectre Attacks: Exploiting Speculative Execution. In S&P,
2019.

[42] Christopher Kruegel, Darren Mutz, Fredrik Valeur, and Giovanni
Vigna. On the Detection of Anomalous System Call Arguments.
In ESORICS, 2003.

[43] Bingchen Lan, Yan Li, Hao Sun, Chao Su, Yao Liu, and Qingkai
Zeng. Loop-oriented programming: a new code reuse attack to
bypass modern defenses. In IEEE Trustcom/BigDataSE/ISPA,
2015.

[44] Terran Lane and Carla E. Brodley. Temporal Sequence Learning
and Data Reduction for Anomaly Detection. TOPS, 1999.

[45] C. M. Linn, M. Rajagopalan, S. Baker, C. Collberg, S. K. Debray,
and J. H. Hartman. Protecting Against Unexpected System Calls.
In USENIX Security Symposium, 2005.

[46] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In USENIX
Security Symposium, 2018.

[47] Teresa F. Lunt. Automated Audit Trail Analysis and Intrusion
Detection: A Survey. In NCSC, 1988.

[48] Shaohua Lv, Jian Wang, Yinqi Yang, and Jiqiang Liu. Intru-
sion Prediction With System-Call Sequence-to-Sequence Model.
IEEE Access, 2018.

[49] Microsoft. Data Execution Prevention, 2021.
[50] Darren Mutz, Fredrik Valeur, Giovanni Vigna, and Christopher

Kruegel. Anomalous System Call Detection. TOPS, 2006.
[51] Nergal. The advanced return-into-lib(c) explits: PaX case study,

2001.
[52] Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dil-

lig. Automated Policy Synthesis for System Call Sandboxing.
PACMPL, 2020.

[53] Y. Qiao, X.W. Xin, Y. Bin, and S. Ge. Anomaly intrusion detec-
tion method based on HMM. Electronics Letters, 2002.

[54] Charles Reis, Alexander Moshchuk, and Nasko Oskov. Site
Isolation: Process Separation for Web Sites within the Browser.
In USENIX Security Symposium, 2019.

[55] Roman Rogowski, Micah Morton, Forrest Li, Fabian Monrose,
Kevin Z. Snow, and Michalis Polychronakis. Revisiting Browser
Security in the Modern Era: New Data-Only Attacks and De-
fenses. In EuroS&P, 2017.

[56] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas
Davi, Ahmad-Reza Sadeghi, and Thorsten Holz. Counterfeit
Object-oriented Programming: On the Difficulty of Preventing
Code Reuse Attacks in C++ Applications. In S&P, 2015.

[57] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. Zom-
bieLoad: Cross-Privilege-Boundary Data Sampling. In CCS,
2019.

[58] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast
automaton-based method for detecting anomalous program be-
haviors. In S&P, 2001.

[59] Hovav Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In CCS,
2007.

[60] Dimitrios Skarlatos, Qingrong Chen, Jianyan Chen, Tianyin Xu,
and Josep Torrellas. Draco: Architectural and Operating System
Support for System Call Security. In MICRO, 2020.

[61] Brad Spengler. Recent ARM Security Improvements, 2013.
[62] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK:

Eternal War in Memory. In S&P, 2013.
[63] H.S. Teng, K. Chen, and S.C. Lu. Adaptive real-time anomaly

detection using inductively generated sequential patterns. In S&P,
1990.

[64] Stephan van Schaik, Alyssa Milburn, Sebastian österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cris-
tiano Giuffrida. RIDL: Rogue In-flight Data Load. In S&P,
2019.

[65] D. Wagner and R. Dean. Intrusion detection via static analysis.
In S&P, 2001.

[66] David Wagner and Paolo Soto. Mimicry Attacks on Host-Based
Intrusion Detection Systems. In CCS, 2002.

[67] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions
using system calls: alternative data models. In S&P, 1999.

[68] Lee Wenke, S.J. Stolfo, and K.W. Mok. A data mining framework
for building intrusion detection models. In S&P, 1999.

[69] Andreas Wespi, Marc Dacier, and Hervé Debar. Intrusion De-
tection Using Variable-Length Audit Trail Patterns. In RAID,
2000.

[70] Mozilla Wiki. Project Fission, 2019.
[71] Mozilla Wiki. Security/Sandbox, 2019.
[72] SELinux Wiki. FAQ — SELinux Wiki, 2009.
[73] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Reso-

lution, Low Noise, L3 Cache Side-Channel Attack. In USENIX
Security Symposium, 2014.

[74] Zhang Zhengdao, Peng Zhumiao, and Zhou Zhiping. The Study
of Intrusion Prediction Based on HsMM. In APSCC, 2008.

