
Forward-Looking Statement Disclaimer
This presentation may contain forward-looking statements under
applicable securities laws. All statements other than statements of
historical fact are forward-looking statements. Forward-looking
statements are based on information available to Jamf at the time they
are made and provide Jamf’s current expectations and projections about
our financial condition, results, plans, objectives, future performance and
business. You can identify forward-looking statements by the fact that
they do not relate strictly to historical or current facts. Forward-looking
statements may include words such as "anticipate," "estimate," "expect,"
"project," "plan," "intend," "believe,” "may," "will," "should," "can have,"
"likely" and other terms of similar meaning in connection with any
discussion of the timing or nature of future operating or financial
performance or other events.

All statements we make about our estimated and projected costs,
expenses, cash flows, growth rates and financial results are forward-
looking statements. In addition, our plans and objectives for future
operations, growth initiatives, product plans and product strategies are
forward-looking statements.

There are various factors, risks and uncertainties that may cause Jamf’s
actual results to differ materially from those that we expected in any
forward-looking statements. These factors and risks are set forth in the
documents Jamf files with the U.S. Securities and Exchange Commission
(SEC). These documents are publicly available on the SEC’s website.

Forward-looking statements are not guarantees of future performance
and you should not place undue reliance on them. Jamf is under no
obligation to update any forward-looking statements made in this
presentation.

macOS Detections
 at Jamf Threat Labs

Introduced 10.15

Replacement for:
• Kauth KPI
• Mac kernel framework
• OpenBSM audit trail

Kernel extensions difficult to develop and maintain

New security issues created as even minor bugs often
lead to kernel panics.

ESF System Extensions subscribe to system events
e.g.:
•es_event_create_t
•es_event_rename_t
•es_event_exec_t
•es_event_fork_t

kernel sends detailed info about event to all subscribed
system extensions

ESF events delivered as either Notification Events or
Authorization Events

Notify events send detailed event information to the
subscribed system extensions and the vendor
application can do what it wants with that information.
e.g.:

•Logging
•Apply detection logic
•Display an alert

Notify events are report only. They have no bearing on
the execution of the event.

Authorization events:
•Prevent activity from proceeding
•Send event data to subscribed clients
•Await approve/deny response from client

Client uses its own logic to determine whether event
should proceed

Authorization events on process creates offer a great
opportunity for vendors to apply static detections at the
moment of execution

Behavioral Detections
Powered by ESF

Fake File Extension

Attackers sometimes disguise malicious files like
executables by masquerading file extensions like PDF.

Detection logic can be applied at the time of file
creation.

Attackers can gain persistence via malicious launch
agents and launch daemons

In many cases, they will disguise their launch plist by
pre-pending the name with com.apple

This can be detected by performing additional code
signing checks on the executable at the path in the
program arguments of the plist

If the program is not signed by Apple, it shouldn’t be
called from a plist labeled com.apple

Plist Disguised as Apple

• Event process (pid) is cut command
• Cut command was run by the parent (ppid) zsh
• Responsible pid was Terminal.app
• String of piped commands was led by (pgid)

system_profiler
• All commands in the session have the same Session

id which belongs to /usr/bin/login

Behaviors and Processes

Fileless malware curls scripts and binaries piped directly to
interpreters like osascript to avoid leaving file artifacts for
static detection.

Detection can often be achieved by linking interpreter
execution with a pgid pointing to curl

Curl piped to Interpreter

Advanced
Behavioral Detections

Covered last year by Cedric Owens, macOS
Gatekeeper had a (since patched) bug that allowed
unsigned code to pass Gatekeeper checks by failing to
meet Gatekeeper’s heuristic definition of an app bundle.
If an app was missing an info.plist and had a script as
the app executable, Gatekeeper would simply allow the
app to run without any additional checks or prompts to
the user.

CVE 2021-30657
Gatekeeper Bypass

We discovered Shlayer abusing this bypass.

Example of pre-bypass Shlayer (left) vs
Double-click (no prompt) bypass found in wild (right)

XCSSET discovered piggybacking TCC permissions of
legitimate apps

Malicious app nested inside of legitimate app, inheriting
its TCC permissions with no user prompts

(Since patched by Apple)

CVE 2022-22616
TCC Bypass

Detection achieved by looking for nested app bundles
Code signing checks performed on both apps
In malicious cases, inner app has either:

• No code signature
• Ad-hoc signature
• Team ID that does not match outer app

Application bundles are directory structures and can’t
be downloaded from the internet as a file.

They are often zipped into an archive file to get around
this.

For convenience, Safari, by default, automatically unzips
these archives.

CVE 2022-22616
Gatekeeper Bypass

We discovered legitimate apps hosted online bypassing
Gatekeeper checks when auto-unzipped by Safari. The
top level of the app directory was missing the
quarantine attribute.

When downloaded from a different browser and
unzipped by manually clicking, the same app properly
received the quarantine attribute.

This narrowed the issue to the Safari Sandbox broker
which is responsible for the auto unzip

We were able to replicate this issue by taking a normally
zipped app and manually deleting the first directory
header in the zip file

Removing this header led to the Bill of Materials failing
to index the top level of the app bundle, but would still
successfully unzip the application

Since that directory header was missing from the Bill of
Materials, the quarantine bit failed to be applied to the
unzipped file.

When the top level of the app directory has no
quarantine bit, it runs with no Gatekeeper checks

This bug was patched by Apple

• Detection looks for rename event that is being
handled by Safari Sandbox Broker

• It looks for apps being moved from a temp directory
to Downloads

• It then performs an additional extended attribute
lookup to confirm that quarantine bit has been applied
as expected

