blgc’zk hat

B e

PISE: Automatic Protocol Reverse Engineering

Ron Marcovich, Orna Grumberg and Gabi Nakibly

BBBBBBBBBBBBBBBBBBBBB

blgc’zk hat

= ==

Ron Marcovich

~
TECHNION
Israel Institute

of Technology

M.Sc. Student

Introductions

e

Dr. Gabi Nakibly

\"F TECHNION ~°°® d
M Israel Institute] ra Wa re
of Technology

Senior Adjunct Distinguished
Lecturer Researcher

Formerly at
RARAELOX (@

Prof. Orna Grumberg

ol
TECHNION
Israel Institute
of Technology
Faculty Member

blgc’:k hat

= ==

What Is protocol What is PISE all How PISE does its

RE? about? magic?
R HELD S 25006 ERmu /
— e
SN
M 4’4; RCPTTO
Sz
§: 550

O

black hat

= ==

Motivation and Background

O

blackhat What Is protocol reverse engineering?

= ==

Hi Hello

How are you? Irw.

O

blackhat What is protol reverse engineering?

= ==

Mail Client Malil Server

HEL(]
200 K

MAIL FROM

200 OK
REPT T0

N

O

blackhat What is protoc%l reverse engineering?

= ==

R:HELL NWall I]K\ iI Srver

ﬁ TR:MML FROM
R:RSET

RCPT220TO: *30D30A lS;QEI]I]K

:
R:RCPT TO
L N
R:-DATA R:-RCPT T
\/
S:Za0 0K

S: 550

O

black hat

= ==

Motivation | - Finding Bugs

Client
init

data

data

finish

\/

data

Server

O

black hat Motivation I - Finding backdoors

= ==

Client Server
init
getFile
deny

SesameGetFile

\7 file

O

blackhat Motivation Il - Analyzing Malware

= ==

et info

Send Spam

Dod <url>

bi& ek hat Protocol RE is Hard!

= ==

It can be days or even weeks!

O

black hat Research Goal

= ==

R HELD
R MAIL FROM
is; 950 0K

R DAT/ R: REPT TO

O

black hat No Assumptions

= ==

No past traffic No active No source
captures protocol peer code

'3
A

O

black hat

= ==

PISE Is action, Examples and Demo

[RECEIVE]: ok1

[RECEIVE]: ok2

login

okl/ok2

logoutl/logout2

[SEMD]: login

O

blackhat We wanted to get to the real thing

= ==

RE: Protocol inference

) & Reply | % Reply Al | —> Forward | | se»
Ron Marcovich J nePy J NEPY
To Gabi Makibly Wed 201172019 1950

SMTP Cllent Cc Orna Grumberg

Hi Crna, Gabi,

Another good news! | have changed a couple of things in my algorithm after the meeting today. It now finds a state machine
that seems very accurate. | guess the only thing left to understand here is why there 3 types of unknown received messages
(numbered (0), (1), (2)) and why does a better predicate is not discovered for them. | think it has something to tell about the
client's code that | am missing. (Maybe something with the modification | did in order to make it work with angr?)

Hope you will be able to read (transitions going out of the figure are to the reject sink state). Notice the loops with the

rargivoand maccamac and thao fa that raccamac (Ml and (11 alrnct coom tn mmark tha lact racnapca fram tha carnsar hafara tha

[:-
: [SEMD]: QUIT (33

[RECEIVE] (2 SEND]: RCRT TO: <to@example.co [RECEIVEL: [SEMDL: DATA &

O [RECEMNE] (4 O [SEMDT EHLO smipy O-h L]: MAIL FROM: <mail@exan ©

VE]: (0]

10
[RECEIVE] (&) E

on

O

blackhat We wanted to get to the real thing

= ==

Messages’ formats are extracted as well!

SMTP messages

Ron Marcovich
To Gabi Makibly

MS5G ID 0: {RECEIVE} [UNKNOWN] 0x00

MSG ID 2: {SEND} [EHLO smip] Ox45 Ox48 Oxdc Oxdf Ox20 0x73 Ox6d 0x74 0x70 Ox0d Ox0a

MSG ID 3: {RECEIVE]} [-] Ox2d

MSG ID 10: {SEND} [MAIL FROM:<mail@example.com>] Ox4d Ox41 0x49 Oxdc 0x20 0x46 0x52 Ox4df Oxdd 0x3a Ox3c Oxod 0x61 0x69 Ox6c 0x40 Ox65
MS5G ID 105: {SEND} [RCPT TO:<to@example.com>] 0x52 0x43 O0x50 0x54 0x20 0x54 Ox4f Ox3a Ox3c 0x74 Ox6f Ox40 Ox65 Ox78 Ox61 Ox6d 0x70 Ox6¢
MSG ID 602: {SEND} [DATA] Ox44 0x41 0x54 0x41 Ox0d Ox0a

MSG ID 1076: {RECEIVE]} [354] Ox33 Ox35 0x34
MSG ID 1659: {SEND} [Subject: Subject Line] 0x53 0x75 0x62 0x6a 0x65 0x63 0x74 0x3a 0x20 0x53 0x75 0x62 Oxba Ox65 0x63 0x74 0x20 Oxdc Ox65

MSG ID 2119: {SEND} [From: "From Name" <maili@example.com>] 0x46 0x72 0x6f 0x6d 0x3a 0x20 0x22 O0x46 0x72 0x6f Oxod 0x20 Oxde Ox61 Oxod
MSG ID 2304: {SEND} [To: "To Name" <to@example.com=] 0x54 0x6f 0x3a 0x20 0x22 0x54 0x6f 0x20 Oxde 0x61 Ox6d Ox65 Ox22 Ox20 Ox3c Ox74 Ox
MSG ID 2305: {SEND} [Email Body] Ox45 Oxod 0x61 0x65 Ox6c 0x20 0xd2 0x6f Ox64d 0x79 Ox0d Ox0a

MSG ID 2306: {SEND} [.] Ox2e 0x0d Ox0a

MSG ID 2310: {RECEIVE} [250] Ox32 Ox35 Ox30

MSG ID 2555: {SEND} [QUIT] Ox51 Ox55 Ox49 0x54 Ox0d Ox0a

blhak hat Then COVID came....

= ==

Remember those days when we had no idea what Zoom is?

From: Gabi Nakibly <gabinkbl@gmail.com>

Sent: Tuesday, March 17, 2020 3:26 PM

To: Orna Grumberg <orna@cs.technion.ac.il=

Cc: Ron Marcovich <ron.mar@campus.technion.ac.il>
Subject: Re: meeting tomorrow

I am OK with Thursday morning. | am not sure what zoom is. Can you send a link?

OOV

bibdknat Then we tried t

= ==

A ronmar@DESKTOP-9AT6HSO: - X t |~
1~$

O

black hat

Under the Hood

O

black hat Overview

= ==

L* Algorithm Symbolic Execution

O

blackhat L* Algorithm (Automata Learning)

= ==

INFORMATION AND COMPUTATION 75, 87-106 (1987)

Learning Regular Sets from Queries
and Counterexamples*

Q: Is a given message ‘exchange valid by the
Deparrmemm #ic University,
P.O. Box 2158, ;) et Connecticut 06520

The problem of identifying an unknown regular set from examples of its members
and nonmembers is addressed. It is assumed that the regular set is presented by a
minimally adequate Teacher, which can answer membership queries about the set
and can also test a conjecture and indicate whether it is equal to the unknown set
and provide a counterexample if not. (A counterexample is a string in the sym-
metric difference of the correct set and the conjectured set.) A learning algorithm
L* 1s described that correctly learns any regular set from any minimally adequate
Teacher in time polynomial in the number of states of the minimum dfa for the set
and the maximum length of any counterexample provided by the Teacher. It is
shown that in a stochastic setting the ability of the Teacher to test conjectures may
be replaced by a random sampling oracle, EX(). A polynomial-time learning

blgc’:k hat

L SANEEI= =

Using L* Algorithm

{R:1n1t, sttart}\/
(R:init, R:init} ¥

R:data
R:1nit ‘ S:start
@ R:finish

Client
init

data

finish

Server

start

O

black hat But there is a problem!

= ==

We do not know what are the protocol’'s
message types!!

Let’'s assume for now we do know the message types.

O

blackhat Answering Membership queries

= ==

Is this sequence of
message types
valid for the
protocol?

Yes/No

blgc’:k hat

ack hat Symbolic Execution

a>3 ,b=2789

¥ = input()
‘}:—ta
K:Tx+5
X = a+ 5
Y
1T (x = 0)
a+5}N5-ﬂi=ﬂ
y q 1nput() y = 10
1¥-*h ly-alﬂ

if (x = 2)
ﬁx’fﬁ\xi + 5 <= 2 a+ 5> 2;/\\? + 5 <= 2

if (y == 2789) END
10 == 2789 10 1= 2789
ERROR END

O

black hat Answering Membership queries

= ==

Is {R: Init, S: Start, R: Data} valid for the protocol?

msg < Receive()
if (msg is Init)

false true

“"\ Send(Start)

Msg < Receive()
If (msg is Data)

false

Sen%r)

O

black hat Answering Membership queries

= ==

Is {R: Data} valid for the protocol?

msg < Receive()

if (msg is Init)
false Xe
Error() Send(Start)

Msg < Receive()
X If (msg is Data)
false true

Send(Error)

bladkhat Answering Membership queries

= ==

 LetM={M1, .., Mn}
 Whenever send/receive procedures are called for the i-th time, append a predicate that
identifies Mi, as constraint

» After n {send/receive}s, if there are feasible executions — then the sequence M is valid

Gray: valid state

Red: invalid for the sequence

Magenta: valid for the sequence
M

biSeknat How to identify a send or receive?

= ==

 Intercept calls to send and receive procedures

roc near ; CODE XREF: smtp puts+31ip smtp_getline proc near smtp read and parse codet+26ip
initiate_handshake+2Fip
word ptr
word ptr N - = e
E_, smi gword pt
) ; dword ptr
ptr P
ptr

ptr endbrad

push
MoV
sub
MoV smtp], rdi
call errno_location
MoV word ptr [rax],

=

i
1 ¥ D U T o |
L ST W R N R A

i
(K]
3
[|

L

L L T]
1

L V- T T - I - N 6 |

¥
¥
-
L
-
B
o~
B

; size
mov 1 3 nmemb
call
mov
mov
Mo
MmOV
MoV

wf _offset], rax Mo
short loc_482F2B MoV
mov

Mo

MmOV

0
s JR S
L
1 A

=
-+

=
d

=

d
L]

.

| B, M.l |
]

o oo O

L
+ +

-
g

L]

=

(1]
ol m

F
=

loc_482EAC: ; CODE XREF: smtp write+(54j

i M M
1 =2 v oL O oMo @l
"]

p+oytes To "-i'“.'-], TAX

hort loc_4B2ECA

oo~ -
Lo]
+ |

1 A

Mo

O

black hat Discovering message types

= ==

As said, we do not know is advance the protocol’'s message types.

We utilize update membership queries to discover it little by little.

Is this sequence of
message types

valid for the
protocol?
Extend L* to .
handle the new ‘
Yes/No

message type
If yes, here is a message

type that can follow the
sequence.

O

blackhat Probing for following message types

= ==

What message types can follow {R: Init}?

msg < Receive()
if (msg is Init)

false true

Send(Start)
Msg < Receive()
If (msg is Data)

O

blackhat Probing for following message types

= ==

What message types can follow {R: Init, S: Start}?

msg < Receive()
if (msg is Init)

“alse true

Send(Start)
Msg < Receive()
If (msg is Data)

Send(Error)

O

blackhat Probing for following message types

= ==

msg € receive ()
if (msg begins with ‘data’) {

// Constraint: msg begins with ‘Data’\/’
} else

// I can’t parse this message, error

biSekhat Concrete messages > Message type

= ==

Example Find features of
Messages message type

RCPT TO: emaill@blabla.com
RCPT TO: email2@Ialala.com » SR

RCPT TO: email3@nana.com

BBBBBBBBBBBBBBBBBBBBB

O

black hat Tying it all together

= ==

Use symbolic execution to learn if a given sequence of messages Is
valid and if so, what are the next messages the program expects to
receive or Is about to send. ik
{R: 1nit, S: start} - Avalid sequence. A next message is data. start

{R: data} - Notavalid sequence. data

finish

Based on this information use a well-known algorithm (called L* R:data
algorithm) to reconstruct the protocol’'s state machine. R:init =i>8:start

@ >R:finish

O

black hat An illustrative example

= ==

S:start

M= { RMiRR: iifgReiBtiinish}
valid ?

s @
M= {B:3hatt,R:data,R:finish}

. R:finish

O

black hat

= ==

PISE’s interacts with the binary using symbolic execution.
This means that PISE is as good or as bad as the symbolic tool used.
Currently, PISE supports only Angr.

- Trouble supporting threads.

- Does not fully support windows API

O

black hat

= ==

R: HELD 3: 2a00 0K R: MAIL

/ e — WRDM
R: RSET
|S: 250 0K
R: RCPT 10
~ ™\ é/)
ROMA R: RCPTTO L* Algorithm Symbolic Execution

; https://github.com/ron4548/PISEServer

https://github.com/ron4548/PISEServer

blgc’:k hat

= ==

https://qgithub.com/ron4548/PISEServer

https://github.com/ron4548/PISEServer

