
#BHUSA @BlackHatEvents

PISE: Automatic Protocol Reverse Engineering

Ron Marcovich, Orna Grumberg and Gabi Nakibly

#BHUSA @BlackHatEvents

Ron Marcovich

M.Sc. Student

Introductions

Dr. Gabi Nakibly

Senior Adjunct

Lecturer

Distinguished

Researcher

Formerly at

Prof. Orna Grumberg

Faculty Member

#BHUSA @BlackHatEvents

Agenda

What is protocol

RE?

What is PISE all

about?
How PISE does its

magic?

S: 250

OK

start

R: HELO S: 250 OK R: MAIL

FROM

R: RCPT TO

S: 250 OK

R: DATA

S: 550

R: RCPT TO

R: RSET

#BHUSA @BlackHatEvents

Motivation and Background

#BHUSA @BlackHatEvents

Hi Hello
How are you? I am fine.Tuesday

What is protocol reverse engineering?

#BHUSA @BlackHatEvents

250 OK

HELO

250 OK

MAIL FROM

RCPT TO

Mail Client Mail Server

What is protocol reverse engineering?

#BHUSA @BlackHatEvents

250 OK

start

HELO 250 OK
MAIL FROM

RCPT TO

250 OK

DATA

550

RCPT TO

RSET

RCPT%20TO:*%0D%0A

R:
R:

R:

R:

R:

S:

S:

S:
S:

R:

Mail Server

What is protocol reverse engineering?

#BHUSA @BlackHatEvents

data

init

data

finish

data

ServerClient

Motivation I – Finding Bugs

#BHUSA @BlackHatEvents

init

getFile

deny

SesameGetFile

file

ServerClient

Motivation II – Finding backdoors

#BHUSA @BlackHatEvents

C&C
channel

Get info

Send Spam

DoS <url>

Motivation III – Analyzing Malware

#BHUSA @BlackHatEvents

It can be days or even weeks!

Protocol RE is Hard!

#BHUSA @BlackHatEvents

start

R: HELO S: 250 OK
R: MAIL FROM

S: 250 OK

R: RCPT TO

S: 250 OK

R: DATA

S: 550

R: RCPT TO

R: RSET

RCPT%20TO:*%0D%0A

Research Goal

#BHUSA @BlackHatEvents

No past traffic

captures

No active

protocol peer

No source

code

No Assumptions

#BHUSA @BlackHatEvents

PISE is action, Examples and Demo

#BHUSA @BlackHatEvents

First, we crafted a toy example

login

ok1/ok2

logout1/logout2

#BHUSA @BlackHatEvents

SMTP client

We wanted to get to the real thing

#BHUSA @BlackHatEvents

Messages’ formats are extracted as well!

We wanted to get to the real thing

#BHUSA @BlackHatEvents

Remember those days when we had no idea what Zoom is?

☺☺☺☺☺☺

Then COVID came….

#BHUSA @BlackHatEvents

Then we tried to work with gh0st RAT

#BHUSA @BlackHatEvents

Under the Hood

#BHUSA @BlackHatEvents

Q A

L* Algorithm Symbolic Execution

Overview

#BHUSA @BlackHatEvents

L* Algorithm (Automata Learning)

Q: Is a given message exchange valid by the

protocol?

#BHUSA @BlackHatEvents

{R:init, S:start}

{R:init, R:init}

init

start

data

finish

idle

open

close

R:init S:start

R:finish

Using L* Algorithm

R:data

Client Server

#BHUSA @BlackHatEvents

We do not know what are the protocol’s

message types!!

Let’s assume for now we do know the message types.

But there is a problem!

#BHUSA @BlackHatEvents

L*

algorithm

Symbolic

Execution

Is this sequence of

message types

valid for the

protocol?

Yes/No

Answering Membership queries

#BHUSA @BlackHatEvents

a > 3 ,b = 2789

Symbolic Execution

#BHUSA @BlackHatEvents

Is {R: Init, S: Start, R: Data} valid for the protocol?

msg Receive()
if (msg is Init)

truefalse

Send(Start)
Msg ← Receive()
If (msg is Data)

truefalse

.

.

.

Send(Error)
.
.
.

Error()

R: Init

S: Start
R: Data

Answering Membership queries

#BHUSA @BlackHatEvents

Is {R: Data} valid for the protocol?

msg Receive()
if (msg is Init)

truefalse

Send(Start)
Msg ← Receive()
If (msg is Data)

truefalse

.

.

.

Send(Error)
.
.
.

Error()

R: Data

Answering Membership queries

#BHUSA @BlackHatEvents

• Let M = {M1, .., Mn}

• Whenever send/receive procedures are called for the i-th time, append a predicate that

identifies Mi, as constraint

• After n {send/receive}s, if there are feasible executions – then the sequence M is valid

Send/receive
a message

(i-th time)

Constraint to
Mi

Answering Membership queries

Gray: valid state
Red: invalid for the sequence
Magenta: valid for the sequence

#BHUSA @BlackHatEvents

• Intercept calls to send and receive procedures

How to identify a send or receive?

#BHUSA @BlackHatEvents

As said, we do not know is advance the protocol’s message types.

We utilize update membership queries to discover it little by little.

L*

algorithm

Symbolic

Execution

Is this sequence of

message types

valid for the

protocol?

Yes/No

If yes, here is a message
type that can follow the

sequence.

Extend L* to
handle the new
message type

Discovering message types

#BHUSA @BlackHatEvents

What message types can follow {R: Init}?

msg Receive()
if (msg is Init)

truefalse

Send(Start)
Msg ← Receive()
If (msg is Data)

.

.

.

Error()

R: Init

Get

examples

Probing for following message types

#BHUSA @BlackHatEvents

What message types can follow {R: Init, S: Start}?

msg Receive()
if (msg is Init)

truefalse

Send(Start)
Msg ← Receive()
If (msg is Data)

truefalse

.

.

.

Send(Error)
.
.
.

Error()

R: Init

S: Start
Unknown

symbolic value

???

Probing for following message types

#BHUSA @BlackHatEvents

msg receive()

if (msg begins with ‘data’) {

// Constraint: msg begins with ‘Data’

} else {

// I can’t parse this message, error

}

Resume Execution:
Wait for message to

be parsed

Constraints are
developed

according to the
parsing logic

Get concrete
messages that

match constraints

Probing for following message types

#BHUSA @BlackHatEvents

Example
Messages

Find features of
message type

Concrete messages → Message type

RCPT%20TO:*%0D%0A

RCPT TO: email1@blabla.com

RCPT TO: email2@lalala.com

RCPT TO: email3@nana.com

#BHUSA @BlackHatEvents

Use symbolic execution to learn if a given sequence of messages is

valid and if so, what are the next messages the program expects to

receive or is about to send.

{R: init, S: start} - A valid sequence. A next message is data.

{R: data} – Not a valid sequence.

Based on this information use a well-known algorithm (called L*

algorithm) to reconstruct the protocol’s state machine.

init

start

data

finish

S:start

idle

open

close

R:init

R:finish

R:data

Tying it all together

#BHUSA @BlackHatEvents

{S:start,R:data,R:finish}

M={}

idle

open

close

R:init

R:data

R:finish

M={R:init}

S:start

An illustrative example

L*

algorithm

Symbolic

ExecutionYes ☺

{R:init}mnext=

valid ?

M={R:init,S:start}M={R:data}

No

M={R:init,R:data}M={R:init,R:data,R:finish}

{}

Message Types

R:init S:start

R: data R: finish

#BHUSA @BlackHatEvents

PISE’s interacts with the binary using symbolic execution.

This means that PISE is as good or as bad as the symbolic tool used.

Currently, PISE supports only Angr.

- Trouble supporting threads.

- Does not fully support windows API

L*

algorithm

Symbolic

Execution

Caveats

#BHUSA @BlackHatEvents

https://github.com/ron4548/PISEServer

Q A
L* Algorithm Symbolic Execution

start

R: HELO S: 250 OK R: MAIL

FROM

S: 250 OK

R: RCPT TO

S: 250 OK

R: DATA

S: 550

R: RCPT TO

R: RSET

Summary

https://github.com/ron4548/PISEServer

#BHUSA @BlackHatEvents

Questions

https://github.com/ron4548/PISEServer

https://github.com/ron4548/PISEServer

